大语言模型量化方法对比:GPTQ、GGUF、AWQ

news2025/2/26 5:08:00

在过去的一年里,大型语言模型(llm)有了飞速的发展,在本文中,我们将探讨几种(量化)的方式,除此以外,还会介绍分片及不同的保存和压缩策略。

说明:每次加载LLM示例后,建议清除缓存,以防止出现OutOfMemory错误。

 del model, tokenizer, pipe
 
 import torch
 torch.cuda.empty_cache()

如果在jupyter中无法释放显存,请重启这个jupyter notebook。

模型加载

加载LLM的最直接、最普通的方式是通过🤗Transformers。HuggingFace已经创建了一个套件,我们能够直接使用

 pip install git+https://github.com/huggingface/transformers.git
 pip install accelerate bitsandbytes xformers

安装完成后,我们可以使用以下管道轻松加载LLM:

 from torch import bfloat16
 from transformers import pipeline
 
 # Load in your LLM without any compression tricks
 pipe = pipeline(
     "text-generation", 
     model="HuggingFaceH4/zephyr-7b-beta", 
     torch_dtype=bfloat16, 
     device_map="auto"
 )

我们这里使用zephyr-7b-beta作为示例

这种加载LLM的方法通常不会执行任何压缩技巧。我们来做个使用的示例

 messages = [
     {
         "role": "system",
         "content": "You are a friendly chatbot.",
     },
     {
         "role": "user", 
         "content": "Tell me a funny joke about Large Language Models."
     },
 ]
 prompt = pipe.tokenizer.apply_chat_template(
     messages, 
     tokenize=False, 
     add_generation_prompt=True
 )

使用内部提示模板生成的提示是这样构造的:

然后,我们可将提示传递给LLM来生成答案:

 outputs = pipe(
     prompt, 
     max_new_tokens=256, 
     do_sample=True, 
     temperature=0.1, 
     top_p=0.95
 )
 print(outputs[0]["generated_text"])

这是一个最直接的使用流程,但是对于纯推理,这种方法效率是最低的,因为在没有任何压缩或量化策略的情况下加载整个模型。

分片

在我们进入量化策略之前,我们先介绍一个前置的方法:分片。通过分片可以将模型分割成小块,每个分片包含模型的较小部分,通过在不同设备上分配模型权重来解决GPU内存限制。

虽然它没有任何的压缩和量化,但是这种方法算是一个最简单的加载大模型的方案。

比如Zephyr-7B-β,实际上已经分片了!如果进入模型并点击“Files and versions”链接,可以看到模型被分成了8个部分。

模型的分片非常简单,可以直接使用Accelerate 包:

 from accelerate import Accelerator
 
 # Shard our model into pieces of 1GB
 accelerator = Accelerator()
 accelerator.save_model(
     model=pipe.model, 
     save_directory="/content/model", 
     max_shard_size="4GB"
 )

这样将模型分成4GB的分片

量化

大型语言模型由一堆权重和激活表示。这些值通常由通常的32位浮点(float32)数据类型表示。

比特的数量告诉你它可以表示多少个值。Float32可以表示1.18e-38和3.4e38之间的值,相当多的值!比特数越少,它能表示的值就越少。

如果我们选择较低的位大小,那么模型就会变得不那么准确,但它表示更少的值,从而降低其大小和内存需求。

量化是指将LLM从其原始Float32表示转换为更小的表示。我们不希望简单地使用较小的位变体,而是希望在不丢失太多信息的情况下将较大的位表示映射到较小的位。

所以一般情况下,我们经常使用一种名为4bit-NormalFloat (NF4)的新格式来实现这一点。这个数据类型做了一些特殊的技巧,以便有效地表示更大的位数据类型。它包括三个步骤:

归一化:将模型的权重归一化,以便我们期望权重落在一定范围内。这允许更有效地表示更常见的值。

量化:将权重量化为4位。在NF4中,量化级别相对于归一化权重是均匀间隔的,从而有效地表示原始的32位权重。

去量化:虽然权重以4位存储,但它们在计算期间被去量化,从而在推理期间提高性能。

我们可以直接使用Bitsandbytes库进行量化操作:

 from transformers import BitsAndBytesConfig
 from torch import bfloat16
 
 # Our 4-bit configuration to load the LLM with less GPU memory
 bnb_config = BitsAndBytesConfig(
     load_in_4bit=True,  # 4-bit quantization
     bnb_4bit_quant_type='nf4',  # Normalized float 4
     bnb_4bit_use_double_quant=True,  # Second quantization after the first
     bnb_4bit_compute_dtype=bfloat16  # Computation type
 )

上面的配置指定要使用的量化级别。比如4位量化表示权重,但用16位进行推理。

然后在管道中加载模型就很简单了:

 from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
 
 # Zephyr with BitsAndBytes Configuration
 tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha")
 model = AutoModelForCausalLM.from_pretrained(
     "HuggingFaceH4/zephyr-7b-alpha",
     quantization_config=bnb_config,
     device_map='auto',
 )
 
 # Create a pipeline
 pipe = pipeline(model=model, tokenizer=tokenizer, task='text-generation')

接下来使用与之前相同的提示:

 outputs = pipe(
     prompt, 
     max_new_tokens=256, 
     do_sample=True, 
     temperature=0.7, 
     top_p=0.95
 )
 print(outputs[0]["generated_text"])

量化是一种强大的技术,可以减少模型的内存需求,同时保持性能相似。它允许更快的加载、使用和微调llm,即使使用较小的gpu。

预量化(GPTQ、AWQ、GGUF)

我们已经探索了分片和量化技术。但是量化是在每次加载模型时进行的,这是非常耗时的操作,有没有办法直接保存量化后的模型,并且在使用时直接加载呢?

TheBloke是HuggingFace上的一个用户,它为我们执行了一系列量化操作,我想用过大模型的人一定对它非常的熟悉吧

这些量化模型包含了很多格式GPTQ、GGUF和AWQ,我们来进行介绍

1、GPTQ: Post-Training Quantization for GPT Models

GPTQ是一种4位量化的训练后量化(PTQ)方法,主要关注GPU推理和性能。

该方法背后的思想是,尝试通过最小化该权重的均方误差将所有权重压缩到4位。在推理过程中,它将动态地将其权重去量化为float16,以提高性能,同时保持低内存。

我们需要在HuggingFace Transformers中的gptq类模型中加载:

 pip install optimum
 pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

然后找到需要加载的模型,比如“TheBloke/zephyr-7B-beta-GPTQ”,进行加载

 from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
 # Load LLM and Tokenizer
 model_id = "TheBloke/zephyr-7B-beta-GPTQ"
 tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
 model = AutoModelForCausalLM.from_pretrained(
     model_id,
     device_map="auto",
     trust_remote_code=False,
     revision="main"
 )
 
 # Create a pipeline
 pipe = pipeline(model=model, tokenizer=tokenizer, task='text-generation')

尽管我们安装了一些额外的依赖项,但我们可以使用与之前相同的管道,也就是是不需要修改代码,这是使用GPTQ的一大好处。

GPTQ是最常用的压缩方法,因为它针对GPU使用进行了优化。但是如果你的GPU无法处理如此大的模型,那么从GPTQ开始切换到以cpu为中心的方法(如GGUF)是绝对值得的。

2、GPT-Generated Unified Format

尽管GPTQ在压缩方面做得很好,但如果没有运行它的硬件,那么就需要使用其他的方法。

GGUF(以前称为GGML)是一种量化方法,允许用户使用CPU来运行LLM,但也可以将其某些层加载到GPU以提高速度。

虽然使用CPU进行推理通常比使用GPU慢,但对于那些在CPU或苹果设备上运行模型的人来说,这是一种非常好的格式。

使用GGUF非常简单,我们需要先安装ctransformers包:

 pip install ctransformers[cuda]

然后加载模型“TheBloke/zephyr-7B-beta-GGUF”,

 from ctransformers import AutoModelForCausalLM
 from transformers import AutoTokenizer, pipeline
 
 # Load LLM and Tokenizer
 # Use `gpu_layers` to specify how many layers will be offloaded to the GPU.
 model = AutoModelForCausalLM.from_pretrained(
     "TheBloke/zephyr-7B-beta-GGUF",
     model_file="zephyr-7b-beta.Q4_K_M.gguf",
     model_type="mistral", gpu_layers=50, hf=True
 )
 tokenizer = AutoTokenizer.from_pretrained(
     "HuggingFaceH4/zephyr-7b-beta", use_fast=True
 )
 
 # Create a pipeline
 pipe = pipeline(model=model, tokenizer=tokenizer, task='text-generation')

加载模型后,我们可以运行如下提示:

 outputs = pipe(prompt, max_new_tokens=256)
 print(outputs[0]["generated_text"])

如果你想同时利用CPU和GPU, GGUF是一个非常好的格式。

3、AWQ: Activation-aware Weight Quantization

除了上面两种以外,一种新格式是AWQ(激活感知权重量化),它是一种类似于GPTQ的量化方法。AWQ和GPTQ作为方法有几个不同之处,但最重要的是AWQ假设并非所有权重对LLM的性能都同等重要。

也就是说在量化过程中会跳过一小部分权重,这有助于减轻量化损失。所以他们的论文提到了与GPTQ相比的可以由显著加速,同时保持了相似的,有时甚至更好的性能。

该方法还是比较新的,还没有被采用到GPTQ和GGUF的程度。

对于AWQ,我们将使用vLLM包:

 pip install vllm

使用vLLM可以直接加载模型:

 from vllm import LLM, SamplingParams
 
 # Load the LLM
 sampling_params = SamplingParams(temperature=0.0, top_p=1.0, max_tokens=256)
 llm = LLM(
     model="TheBloke/zephyr-7B-beta-AWQ", 
     quantization='awq', 
     dtype='half', 
     gpu_memory_utilization=.95, 
     max_model_len=4096
 )

然后使用.generate运行模型:

 output = llm.generate(prompt, sampling_params)
 print(output[0].outputs[0].text)

就是这样

https://avoid.overfit.cn/post/47f8871b7144405795301aa0a6bd9a24

作者:Maarten Grootendorst

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1214817.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端跨界面之间的通信解决方案

主要是这两个方案,其他的,还有 SharedWorker 、IndexedDB、WebSocket、Service Worker 如果是,父子嵌套 iframe 还可以使用 window.parent.postMessage(“需要传递的参数”, ‘*’) 1、localStorage 核心点 同源,不能跨域(协议、端…

9.MyBatis-Plus

1、前期准备 a. 创建数据库 CREATE TABLE USER (id BIGINT(20)NOT NULL COMMENT 主键ID,NAME VARCHAR(30)NULL DEFAULT NULL COMMENT 姓名,age INT(11)NULL DEFAULT NULL COMMENT 年龄,email VARCHAR(50)NULL DEFAULT NULL COMMENT 邮箱,PRIMARY KEY (id) );INSERT INTO user…

短路语法 [SUCTF 2019]EasySQL1

打开题目 输入字符的时候啥也不回显。只有输入数字的时候页面有回显 但是当我们输入union,from,sleep,where,order等,页面回显nonono,很明显过滤了这些关键词 最开始我的思路是打算尝试双写绕过 1;ununion…

TS-08-A-2D、TS-08-B-1H插装式电磁比例溢流阀放大器

TS-08-A-2D、TS-08-B-1H插装式电磁比例溢流阀放大器持续的电磁铁、高效能的电磁铁结构、可选的线圈电压和终端、工业化通用插孔、紧凑的结构。 螺纹插装式、先导滑阀式减压溢流阀,利用可变电流输入可实现指定范围内的输出压力连续调节。输出压力与 DC 电流输入成比…

[Jenkins] 物理机 安装 Jenkins

这里介绍Linux CentOS系统直接Yum 安装 Jenkins,不同系统之间类似,操作命令差异,如:Ubuntu用apt; 0、安装 Jenkins Jenkins是一个基于Java语言开发的持续构建工具平台,主要用于持续、自动的构建/测试你的软…

Linux学习教程(第三章 Linux文件和目录管理)1

第三章 Linux文件和目录管理(初识Linux命令) 对初学者来说,管理 Linux 系统中的文件和目录,是学习 Linux 至关重要的一步。 为了方便管理文件和目录,Linux 系统将它们组织成一个以根目录 / 开始的倒置的树状结构。Li…

【架构师】的修炼之道都需要学习哪些?看看这些就够了

👨‍🎓博主简介 🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入! 🐋 希望大家多多支…

代码随想录图论|130. 被围绕的区域 417太平洋大西洋水流问题

130. 被围绕的区域 **题目:**给你一个 m x n 的矩阵 board ,由若干字符 ‘X’ 和 ‘O’ ,找到所有被 ‘X’ 围绕的区域,并将这些区域里所有的 ‘O’ 用 ‘X’ 填充。 题目链接:130. 被围绕的区域 解题思路&#xff1a…

《向量数据库指南》——2023云栖大会现场,向量数据库Milvus Cloud成关注焦点

近期,广受关注的2023 云栖大会正式收官,来自全球各地的开发者集聚一堂,共同探索 AI 时代的更多可能性。 云栖大会是由阿里巴巴集团主办的科技盛宴,是中国最早的开发者创新展示平台。据悉,今年云栖大会的主题为“计算,为了无法计算的价值”,共吸引了全球 44 个国家和地区…

用封面预测书的价格【图像回归】

今天,我将介绍计算机视觉的深度学习应用,用封面简单地估算一本书的价格。 我没有看到很多关于图像回归的文章,所以我为你们写这篇文章。 距离我上一篇文章已经过去很长时间了,我不得不承认,作为一名数据科学家&#x…

OceanBase杨冰:完全自研,才能逢山开路遇水搭桥

11月16日,在OceanBase2023年度发布会上,OceanBase CEO杨冰介绍,中国数字经济的蓬勃发展催生了对分布式数据库的强大需求,这种需求也牵引了OceanBase坚定投入自主研发,从而推动树立了分布式数据库的四项新标准。 据了解…

Harmony SDK API 版本 与 Harmony OS 版本对照表,及如何查看鸿蒙手机Harmony SDK Api 版本

Harmony SDK API 版本 与 Harmony OS 版本对照表 Harmony OSHarmony SDK APIHarmony 4.09Harmony 3.19Harmony 3.08Harmony 3.0 pre7Harmony 2.2.06Harmony 2.1.05Harmony 2.04 具体到真机上可能会有差异,如我的手机OS版本是2.0,按照上面表应该是4&…

jsp中使用PDF.js实现pdf文件的预览

本文介绍的是在使用jsp作为模板引擎的spring-mvc项目中,如何利用 PDF.js实现pdf文件的预览。 1、下载 PDF.js Getting Started (mozilla.github.io) 下载解压后其中有两个目录,直接将这两个文件夹放到项目的web资源目录中。此时相当于把PDF.js这个项目也…

使用Kohya_ss训练Stable Diffusion Lora

Stable Diffusion模型微调方法 Stable Diffusion主要有 4 种方式:Dreambooth, LoRA, Textual Inversion, Hypernetworks。 Textual Inversion (也称为 Embedding),它实际上并没有修改原始的 Diffusion 模型, 而是通过…

Android 14 Beta 1

Android 14的第一个 Beta 版,围绕隐私、安全、性能、开发人员生产力和用户定制等核心主题构建,同时继续改进平板电脑、可折叠设备等大屏幕设备的体验。我们一直在完善 Android 14 的功能和稳定性方面取得稳步进展,现在是时候向开发者和早期采…

软件系统集成指南

软件产品集成是将各种软件组件、模块和代码组装成最终可执行、可应用的软件产品的过程。这个过程涉及到将工作产品转化为产品的组装过程。在软件工程中,产品集成是一个重要的环节,通过持续性集成,将产品集成的过程常态化、自动化。做好产品集…

收集整理微信小程序源码精选8500套(不同行业的源码集合)/带后台+含搭建开发教程

这下面分享的是精心收集整理的微信小程序源码精选8500套,它含有不同行业的源码集合,带后台,而且含搭建开发教程。可以转存起来,需要的时候直接搜索关键词查找就行了,方便得很。 很多伙伴学习小程序不知怎么开始&#…

【Vue-Demo】倒计时3秒后返回首页

首页path:/ 倒计时结束后要清除计时器&#xff0c;防止内存泄漏&#xff1a; if (this.count 0) {clearInterval(this.timer); }<!-- ErrorJump.vue --> <template><h2>Error&#xff1a;找不到页面&#xff01;</h2><h4>{{ count }}S后<R…

01序列 卡特兰数

解法&#xff1a; 将01序列置于坐标轴上&#xff0c;起始点为原点。0表示向右走&#xff0c;1表示向上走。这样就可以将前缀0的个数不少于1的个数就可以转换为路径上的点&#xff0c;横坐标大于纵坐标&#xff0c;也就是求合法路径个数。 注意题目mod的数是质数&#xff0c;所…

【嵌入式项目应用】__单片机STM32有什么好的裸机程序架构思路推荐?

目录 前言 没设计好程序架构&#xff0c;根本做不稳定。 按照我的思维&#xff0c;我会这样去设计程序&#xff1a; 那这样的好处是什么&#xff1f; (*&#xffe3;︶&#xffe3;)创作不易&#xff01;期待你们的 点赞、收藏和评论喔。 前言 在我刚出来的时候&#x…