【差分演化算法相关文献总结】

news2024/11/24 13:26:19

差分演化算法相关文献总结

  • 前言
  • 概述
  • 文献综述
  • 总结

前言

  本人作为一名从事了三年演化算法研究的菜鸡研究生,其中大部分时间都在专注于差分演化算法(Differential Evolution, DE)的相关研究。现如今已经毕业,回顾往昔,经过阅读大量的文献,也算是浅浅的入了演化算法的门。
  本文将总结出我在读研期间所收集和阅读过的与 DE 相关的一些论文,以供从事演化算法研究,尤其是 DE 算法研究的各位学者们进行学习和参考。下面我会附上论文的名称对应的连接,感兴趣的小伙伴可自行下载阅读。
  首先,我们还是先附上 DE 原文:
Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11: 341-359.

概述

  在众多的演化算法中,差分演化算法作为一种经典高效元启发算法,具有参数少收敛快鲁棒性高等优点,使其一度成为了演化计算领域的热点。在2006年至2009年由IEEE举办的CEC演化大赛中,DE连续取得了第一的名次,并且在近三年的竞赛中,DE依旧具有更好的竞争力。DE是由Storn1995所提出的一种具有较强鲁棒性的优化算法,通过基于种群的随机搜索方式来进行演化更新,每一代的个体都会经历突变交叉选择操作,从而将种群不断向全局最优引导。由于其具有较强的鲁棒性简单性DE进化已成功地应用于医疗问题优化工程设计路径规划计算机视觉等各种领域中,并取得了显著的效果。
  虽然DE存在许多的优点且受到了广泛的使用,但是该算法依旧存在较多的问题和提升空间,如较多的参数设置演化寻优的随机性较大种群多样性的丧失算法易陷入局部最优算法早熟搜索停滞等现象。此类问题的出现会降低DE的算法性能,在解决实际优化问题时会造成不同程度的影响。所以,受到实际问题的驱动,对DE算法的改进和优化从未停止,众多研究者对DE存在的问题进行了讨论及优化。现如今,已有大量的DE变体被提出,极大程度的提高了算法的性能。

在这里插入图片描述

文献综述

  1. Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE transactions on evolutionary computation, 2006, 10(6): 646-657.
  2. Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE transactions on Evolutionary Computation, 2008, 13(2): 398-417.
  3. Fan Q, Wang W, Yan X. Differential evolution algorithm with strategy adaptation and knowledge-based control parameters[J]. Artificial Intelligence Review, 2019, 51: 219-253.
  4. Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE transactions on evolutionary computation, 2011, 15(1): 55-66.
  5. Zhang J, Sanderson A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on evolutionary computation, 2009, 13(5): 945-958.
  6. Mallipeddi R, Suganthan P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied soft computing, 2011, 11(2): 1679-1696.
  7. Mallipeddi R, Suganthan P N. Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies[C]//Swarm, Evolutionary, and Memetic Computing: First International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2010, Chennai, India, December 16-18, 2010. Proceedings 1. Springer Berlin Heidelberg, 2010: 71-78.
  8. Wu G, Mallipeddi R, Suganthan P N, et al. Differential evolution with multi-population based ensemble of mutation strategies[J]. Information Sciences, 2016, 329: 329-345.
  9. Tanabe R, Fukunaga A. Success-history based parameter adaptation for differential evolution[C]//2013 IEEE congress on evolutionary computation. IEEE, 2013: 71-78.
  10. Li X, Wang L, Jiang Q, et al. Differential evolution algorithm with multi-population cooperation and multi-strategy integration[J]. Neurocomputing, 2021, 421: 285-302.
  11. Das S, Mullick S S, Suganthan P N. Recent advances in differential evolution–an updated survey[J]. Swarm and evolutionary computation, 2016, 27: 1-30.
  12. Hassan S, Hemeida A M, Alkhalaf S, et al. Multi-variant differential evolution algorithm for feature selection[J]. Scientific Reports, 2020, 10(1): 17261.
  13. Ahandani M A. Opposition-based learning in the shuffled bidirectional differential evolution algorithm[J]. Swarm and Evolutionary Computation, 2016, 26: 64-85.
  14. Liu X F, Zhan Z H, Lin Y, et al. Historical and heuristic-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(12): 2623-2635.
  15. Ortiz M L, Xiong N. Using random local search helps in avoiding local optimum in differential evolution[C]//Proc. IASTED. 2014: 413-420.
  16. Fan Q, Yan X. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies[J]. IEEE transactions on cybernetics, 2015, 46(1): 219-232.
  17. Tian M, Gao X, Dai C. Differential evolution with improved individual-based parameter setting and selection strategy[J]. Applied Soft Computing, 2017, 56: 286-297.
  18. Gong W, Cai Z, Liang D. Adaptive ranking mutation operator based differential evolution for constrained optimization[J]. IEEE transactions on cybernetics, 2014, 45(4): 716-727.
  19. Tanabe R, Fukunaga A S. Improving the search performance of SHADE using linear population size reduction[C]//2014 IEEE congress on evolutionary computation (CEC). IEEE, 2014: 1658-1665.
  20. ZDT D T. Performance analysis of variants of differential evolution on multi-objective optimization problems[J]. Indian Journal of Science and Technology, 2015, 8(17): 65727.
  21. Peng H, Guo Z, Deng C, et al. Enhancing differential evolution with random neighbors based strategy[J]. Journal of Computational Science, 2018, 26: 501-511.
  22. Yu W J, Shen M, Chen W N, et al. Differential evolution with two-level parameter adaptation[J]. IEEE Transactions on Cybernetics, 2013, 44(7): 1080-1099.
  23. Wang Y, Li H X, Huang T, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232-247.
  24. Xia X, Tong L, Zhang Y, et al. NFDDE: A novelty-hybrid-fitness driving differential evolution algorithm[J]. Information Sciences, 2021, 579: 33-54.
  25. Brest J. Constrained real-parameter optimization with ε-self-adaptive differential evolution[M]. Springer Berlin Heidelberg, 2009.
  26. Huynh T N, Do D T T, Lee J. Q-Learning-based parameter control in differential evolution for structural optimization[J]. Applied Soft Computing, 2021, 107: 107464.
  27. Meng Z, Yang C. Hip-DE: Historical population based mutation strategy in differential evolution with parameter adaptive mechanism[J]. Information Sciences, 2021, 562: 44-77.
  28. Li S, Gu Q, Gong W, et al. An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models[J]. Energy Conversion and Management, 2020, 205: 112443.
  29. Hao Q, Zhou Z, Wei Z, et al. Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution[J]. IEEE Access, 2020, 8: 35979-35994.
  30. Huang Q, Zhang K, Song J, et al. Adaptive differential evolution with a Lagrange interpolation argument algorithm[J]. Information Sciences, 2019, 472: 180-202.
  31. Gong W, Cai Z, Ling C X, et al. Enhanced differential evolution with adaptive strategies for numerical optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 41(2): 397-413.
  32. Qian W, Chai J, Xu Z, et al. Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection[J]. Applied Intelligence, 2018, 48: 3612-3629.
  33. Liu Z Z, Wang Y, Yang S, et al. Differential evolution with a two-stage optimization mechanism for numerical optimization[C]//2016 IEEE congress on evolutionary computation (CEC). IEEE, 2016: 3170-3177.
  34. Wang Y, Yu J, Yang S, et al. Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons[J]. Swarm and Evolutionary Computation, 2019, 50: 100559.
  35. Li Y, Wang S, Liu H, et al. A backtracking differential evolution with multi-mutation strategies autonomy and collaboration[J]. Applied Intelligence, 2022: 1-27.
  36. Ali I M, Essam D, Kasmarik K. Novel binary differential evolution algorithm for knapsack problems[J]. Information Sciences, 2021, 542: 177-194.
  37. Xie W, Yu W, Zou X. Diversity-maintained differential evolution embedded with gradient-based local search[J]. Soft computing, 2013, 17: 1511-1535.
  38. Peng H, Wu Z. Heterozygous differential evolution with Taguchi local search[J]. Soft Computing, 2015, 19: 3273-3291.
  39. Liao J, Cai Y, Wang T, et al. Cellular direction information based differential evolution for numerical optimization: an empirical study[J]. Soft Computing, 2016, 20: 2801-2827.
  40. Kaelo P, Ali M M. A numerical study of some modified differential evolution algorithms[J]. European journal of operational research, 2006, 169(3): 1176-1184.
  41. Brest J, Maučec M S, Bošković B. Single objective real-parameter optimization: Algorithm jSO[C]//2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017: 1311-1318.
  42. Tan Z, Li K, Wang Y. Differential evolution with adaptive mutation strategy based on fitness landscape analysis[J]. Information Sciences, 2021, 549: 142-163.
  43. Zuo Y, Zhao F, Li Z. A knowledge-based differential covariance matrix adaptation cooperative algorithm[J]. Expert Systems with Applications, 2021, 184: 115495.
  44. Zeng Z, Zhang M, Chen T, et al. A new selection operator for differential evolution algorithm[J]. Knowledge-Based Systems, 2021, 226: 107150.
  45. Lu Z, Zhang L, Wang D. Differential evolution with improved elite archive mutation and dynamic parameter adjustment[J]. Cluster Computing, 2019, 22: 9347-9356.
  46. Zhang X, Zhang X. Improving differential evolution by differential vector archive and hybrid repair method for global optimization[J]. Soft Computing, 2017, 21: 7107-7116.
  47. Das S, Konar A, Chakraborty U K. Two improved differential evolution schemes for faster global search[C]//Proceedings of the 7th annual conference on Genetic and evolutionary computation. 2005: 991-998.
  48. Yang Z, Yao X, He J. Making a difference to differential evolution[J]. Advances in metaheuristics for hard optimization, 2008: 397-414.
  49. Das S, Konar A, Chakraborty U K. Two improved differential evolution schemes for faster global search[C]//Proceedings of the 7th annual conference on Genetic and evolutionary computation. 2005: 991-998.
  50. Liang J, Qiao K, Yu K, et al. Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution[J]. Solar Energy, 2020, 207: 336-346.
  51. Cui L, Huang Q, Li G, et al. Differential evolution algorithm with tracking mechanism and backtracking mechanism[J]. IEEE Access, 2018, 6: 44252-44267.
  52. Meng Z, Chen Y, Li X. Enhancing differential evolution with novel parameter control[J]. IEEE Access, 2020, 8: 51145-51167.
  53. Zou D, Gong D. Differential evolution based on migrating variables for the combined heat and power dynamic economic dispatch[J]. Energy, 2022, 238: 121664.
  54. Zhou X G, Zhang G J, Hao X H, et al. Differential evolution with multi-stage strategies for global optimization[C]//2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016: 2550-2557.
  55. Mohamed A K, Mohamed A W. Real-parameter unconstrained optimization based on enhanced AGDE algorithm[J]. Machine learning paradigms: Theory and application, 2019: 431-450.
  56. Cui L, Li G, Zhu Z, et al. Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism[J]. Information Sciences, 2018, 422: 122-143.
  57. Kizilay D, Tasgetiren M F, Oztop H, et al. A differential evolution algorithm with q-learning for solving engineering design problems[C]//2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020: 1-8.
  58. Sharma M, Komninos A, López-Ibáñez M, et al. Deep reinforcement learning based parameter control in differential evolution[C]//Proceedings of the Genetic and Evolutionary Computation Conference. 2019: 709-717.
  59. Tan Z, Li K. Differential evolution with mixed mutation strategy based on deep reinforcement learning[J]. Applied Soft Computing, 2021, 111: 107678.
  60. Zhang H, Sun J, Xu Z. Learning to mutate for differential evolution[C]//2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021: 1-8.
  61. El-Qulity S A, Mohamed A W. A generalized national planning approach for admission capacity in higher education: a nonlinear integer goal programming model with a novel differential evolution algorithm[J]. Computational Intelligence and Neuroscience, 2016, 2016: 21-21.
  62. Mohamed A W. An improved differential evolution algorithm with triangular mutation for global numerical optimization[J]. Computers & Industrial Engineering, 2015, 85: 359-375.
  63. Mohamed A W, Mohamed A K. Adaptive guided differential evolution algorithm with novel mutation for numerical optimization[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 253-277.
  64. Wu G, Shen X, Li H, et al. Ensemble of differential evolution variants[J]. Information Sciences, 2018, 423: 172-186.
  65. Mohamed A W, Hadi A A, Jambi K M. Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization[J]. Swarm and Evolutionary Computation, 2019, 50: 100455.
  66. Mohamed A W, Hadi A A, Mohamed A K. Differential evolution mutations: taxonomy, comparison and convergence analysis[J]. IEEE Access, 2021, 9: 68629-68662.
  67. Mohamed A W, Hadi A A, Fattouh A M, et al. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[C]//2017 IEEE Congress on evolutionary computation (CEC). IEEE, 2017: 145-152.
  68. Kumar A, Misra R K, Singh D. Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase[C]//2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017: 1835-1842.
  69. Kudela J, Matousek R. Lipschitz-based surrogate model for high-dimensional computationally expensive problems[J]. arXiv preprint arXiv:2204.14236, 2022.
  70. Cui L, Huang Q, Li G, et al. Differential evolution algorithm with tracking mechanism and backtracking mechanism[J]. IEEE Access, 2018, 6: 44252-44267.
  71. Meng Z, Zhong Y, Yang C. CS-DE: Cooperative strategy based differential evolution with population diversity enhancement[J]. Information Sciences, 2021, 577: 663-696.
  72. Meng Z, Yang C. Hip-DE: Historical population based mutation strategy in differential evolution with parameter adaptive mechanism[J]. Information Sciences, 2021, 562: 44-77.
  73. Meng Z, Yang C, Li X, et al. Di-DE: depth information-based differential evolution with adaptive parameter control for numerical optimization[J]. IEEE Access, 2020, 8: 40809-40827.
  74. Biswas S, Saha D, De S, et al. Improving differential evolution through Bayesian hyperparameter optimization[C]//2021 IEEE Congress on evolutionary computation (CEC). IEEE, 2021: 832-840.
  75. Cui L, Li G, Lin Q, et al. Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations[J]. Computers & Operations Research, 2016, 67: 155-173.
  76. Ge Y F, Yu W J, Lin Y, et al. Distributed differential evolution based on adaptive mergence and split for large-scale optimization[J]. IEEE transactions on cybernetics, 2017, 48(7): 2166-2180.
  77. Tan Z, Tang Y, Li K, et al. Differential evolution with hybrid parameters and mutation strategies based on reinforcement learning[J]. Swarm and Evolutionary Computation, 2022, 75: 101194.
  78. Gui L, Xia X, Yu F, et al. A multi-role based differential evolution[J]. Swarm and Evolutionary Computation, 2019, 50: 100508.
  79. Cao Z, Jia H, Wang Z, et al. A differential evolution with autonomous strategy selection and its application in remote sensing image denoising[J]. Expert Systems with Applications, 2023: 122108.
  80. Li C, Sun G, Deng L, et al. A population state evaluation-based improvement framework for differential evolution[J]. Information Sciences, 2023, 629: 15-38.
  81. Li Y, Wang S, Yang B, et al. Population reduction with individual similarity for differential evolution[J]. Artificial Intelligence Review, 2023, 56(5): 3887-3949.
  82. Ahmad M F, Isa N A M, Lim W H, et al. Differential evolution: A recent review based on state-of-the-art works[J]. Alexandria Engineering Journal, 2022, 61(5): 3831-3872.
  83. Song Y, Cai X, Zhou X, et al. Dynamic hybrid mechanism-based differential evolution algorithm and its application[J]. Expert Systems with Applications, 2023, 213: 118834.
  84. Wang M, Ma Y, Wang P. Parameter and strategy adaptive differential evolution algorithm based on accompanying evolution[J]. Information Sciences, 2022, 607: 1136-1157.
  85. Meng Z, Yang C. Two-stage differential evolution with novel parameter control[J]. Information Sciences, 2022, 596: 321-342.
  86. Piotrowski A P, Napiorkowski J J, Piotrowska A E. Particle swarm optimization or differential evolution—A comparison[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106008.
  87. Zhang S X, Wen Y N, Liu Y H, et al. Differential evolution with domain transform[J]. IEEE Transactions on Evolutionary Computation, 2022.
  88. Qiao K, Liang J, Yu K, et al. Self-adaptive resources allocation-based differential evolution for constrained evolutionary optimization[J]. Knowledge-Based Systems, 2022, 235: 107653.
  89. Qiao K, Liang J, Qu B, et al. Differential evolution with level-based learning mechanism[J]. Complex System Modeling and Simulation, 2022, 2(1): 35-58.
  90. Cao Z, Wang Z, Fu Y, et al. An adaptive differential evolution framework based on population feature information[J]. Information Sciences, 2022, 608: 1416-1440.
  91. Song Y, Zhao G, Zhang B, et al. An enhanced distributed differential evolution algorithm for portfolio optimization problems[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106004.
  92. Li Y, Han T, Tang S, et al. An improved differential evolution by hybridizing with estimation-of-distribution algorithm[J]. Information Sciences, 2023, 619: 439-456.
  93. Zeng Z, Zhang M, Hong Z, et al. Enhancing differential evolution with a target vector replacement strategy[J]. Computer Standards & Interfaces, 2022, 82: 103631.
  94. Zeng Z, Hong Z, Zhang H, et al. Improving differential evolution using a best discarded vector selection strategy[J]. Information Sciences, 2022, 609: 353-375.
  95. Vermetten D, van Stein B, Kononova A V, et al. Analysis of structural bias in differential evolution configurations[M]//Differential Evolution: From Theory to Practice. Singapore: Springer Nature Singapore, 2022: 1-22.
  96. Kitamura T, Fukunaga A. Differential Evolution with an Unbounded Population[C]//2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2022: 1-8.
  97. Gupta S, Su R. An efficient differential evolution with fitness-based dynamic mutation strategy and control parameters[J]. Knowledge-Based Systems, 2022, 251: 109280.
  98. Deng W, Ni H, Liu Y, et al. An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation[J]. Applied Soft Computing, 2022, 127: 109419.
  99. Li Y, Wang S, Yang H, et al. Enhancing differential evolution algorithm using leader-adjoint populations[J]. Information Sciences, 2023, 622: 235-268.
  100. Chen J, Wang R, Wu D, et al. A differential evolution-enhanced position-transitional approach to latent factor analysis[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7(2): 389-401.

总结

  有关 DE 的相关论文不计其数,这里小编也不可能一一的列出。但是希望从事 DE 相关研究的学者能够不断的集思广益,多汲取一些大佬的思想,能够在算法优化上更上一层楼。
  我将收集到的一些论文进行了打包上传,链接如下:差分演化算法相关学术论文集合

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1212496.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

跌破1940后金价直指1900 对黄金代理是好是坏?

受以鲍威尔为首的美联储官员近期讲话的影响,加上巴以冲突暂时出现降温,导致避险需求下降,在两大因素的影响之下,现货黄金行情在近期的大涨之后出现大跌。金价不光跌破1950关口,在跌穿1940后势头更是直指1900。金价在一…

虹科干货丨Lambda数据架构和Kappa数据架构——构建现代数据架构

文章来源:虹科云科技 虹科干货丨Lambda数据架构和Kappa数据架构——构建现代数据架构 如何更好地构建我们的数据处理架构,如何对IT系统中的遗留问题进行现代化改造并将其转变为现代数据架构?该怎么为你的需求匹配最适合的架构设计呢&#xf…

异常--Java

cry…catch使用 /*需求:测试除法器(try...catch)* 测试人:小王* 测试日期:2023/11/15* */ package yichang_test1;import java.util.InputMismatchException; import java.util.Scanner;public class TestException2 …

cadence virtuoso layout 无法跑DRC

问题:无法跑DRC could not establish connection with Calibre Interactiveon socket localhost 7000. 尝试: 点击一下红框右边的connect。 (此法不一定有用,死马当活马医)

Page分页records有数据,但是total=0,解决办法

Page分页records有数据,但是total0,解决办法 问题:程序运行起来后,后端接收前端传来的搜索请求信息正常,但无法在前端正确反馈信息,通过在后端排查发现total一直等于零,但数据库中有数据&#x…

大数据-之LibrA数据库系统告警处理(ALM-12046 网络写包丢包率超过阈值)

告警解释 系统每30秒周期性检测网络写包丢包率,并把实际丢包率和阈值(系统默认阈值0.5%)进行比较,当检测到网络写包丢包率连续多次(默认值为5)超过阈值时产生该告警。 用户可通过“系统设置 > 阈值配置…

OpenCV的应用——道路边缘检测

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法,使得开发者可以便捷地进行图像处理、对象识别、图像分割等任务。道路边缘检测是计算机视觉中的重要应用之一&…

帝国CMS仿核弹头H5小游戏模板/帝国CMS内核仿游戏网整站源码

帝国CMS仿核弹头H5小游戏模板,帝国CMS内核仿游戏网整站源码。比较适合小游戏发布、APP应用资讯类网站使用,有兴趣的可以二次开发试试。 下载地址:https://bbs.csdn.net/topics/617579435

uniapp基础学习笔记01

文章目录 本博客根据黑马教程学习uniapp一、技术架构二、创建项目2.1 Hbuilder创建2.2 插件安装2.3 微信开发者工具配置与运行2.3.1 简单修改基础页面 2.4 pages.json和tabBar2.4.1 pages.json与tabBar配置2.4.2 案例 三、uniapp与原生开发的区别 本博客根据黑马教程学习uniapp…

C# Socket通信从入门到精通(10)——如何检测两台电脑之间的网络是否通畅

前言: 我们在完成了socket通信程序开发以后,并且IP地址也设置好以后,可以先通过一些手段来测试两台电脑之间的网络是否通畅,如果确认了网络通畅以后,我们再测试我们编写的Socket程序。 1、同时按下键盘的windows键+"R"键,如下图: 下面两张图是两种键盘的情…

参考意义大。4+巨噬细胞相关生信思路,简单易复现。

今天给同学们分享一篇生信文章“Angiogenesis regulators S100A4, SPARC and SPP1 correlate with macrophage infiltration and are prognostic biomarkers in colon and rectal cancers”,这篇文章发表在Front Oncol期刊上,影响因子为4.7。 结果解读&a…

【探索Linux】—— 强大的命令行工具 P.15(进程间通信 —— system V共享内存)

阅读导航 引言一、system V的概念二、共享内存(1) 概念(2) 共享内存示意图(3) 共享内存数据结构 三、共享内存的使用1. 共享内存的使用步骤(1)包含头文件(2)获取键值(ftok函数)(3)创…

LeetCode - 142. 环形链表 II (C语言,快慢指针,配图)

如果你对快慢指针,环形链表有疑问,可以参考下面这篇文章,了解什么是环形链表后,再做这道题会非常简单,也更容易理解下面的图片公式等。 LeetCode - 141. 环形链表 (C语言,快慢指针,…

写作脑科学——屠龙的高效写作指南

ISBN: 978-7-115-59231-6 作者:杨滢(屠龙的胭脂井) 页数:201页 阅读时间:2023-09-09 推荐指数:★★★★★ 十分推荐这本书,写的非常简单易懂,里面有很多方法论和实用技巧&#xff0c…

使用Maxent模型预测适生区

Maxent模型因其在潜在适生区预测中稳健的表现,时下已经成为使用最广泛的物种分布模型。biomod虽然可以通过集成模型的优势来弥补数据量较小的劣势,但是其在使用和运算时间上的优势远不如Maxent,虽然最新的biomod2已经修复了一些bug&#xff0…

Power Apps-使用power Automate流

创建:Power Automate-创建power Apps使用的流-CSDN博客 打开Power Apps,创建页面,添加三个输入框(分别是换算前单位、换算后单位、货币数),和一个文本框(输出结果)以及一个按钮 在…

微信聚合聊天,自动回复

微信,这款融合通讯、社交、娱乐、小程序于一体的平台,已经深深融入我们的日常生活。作为我们日常生活中不可或缺的社交工具,尤其在工作中,我们需要通过微信来沟通客户,这个时候我们就会希望有快速回复客户的方式秒回客…

自动备份pgsql数据库

bat文件中的内容: PATH D:\Program Files\PostgreSQL\13\bin;D:\Program Files\7-Zip set PGPASSWORD**** pg_dump -h 8.134.151.187 -p 5466 -U sky -d mip_db --schema-only -f D:\DB\backup\%TODAY%-schema-mip_db_ali.sql pg_dump -h 8.134.151.187 -p 5466…

从房地产先后跨界通信、文旅演艺领域,万通发展未来路在何方?

近年来,房地产市场可谓负重前行,各大房企纷纷谋求新出路。 作为中国最早的房企之一,万通发展再次处在转型变革的十字路口。自去年以来,万通发展在转型升级之路上动作频频,可谓忙得不亦乐乎。 大幕落下之时,…

【word密码】word设置只读方式的四个方法

想要将word文档设置为只读模式,方法有很多,今天小奥超人介绍几个方法给大家。 方法一:文件属性 常见的、简单的设置方法,不用打开word文件,只需要右键选择文件,打开文件属性,勾选上【只读】选…