tensorflow 1.15 gpu docker环境搭建;Nvidia Docker容器基于TensorFlow1.15测试GPU;——全流程应用指南

news2024/11/24 11:12:41

前言: TensorFlow简介

TensorFlow 在新款 NVIDIA Pascal GPU 上的运行速度可提升高达 50%,并且能够顺利跨 GPU 进行扩展。 如今,训练模型的时间可以从几天缩短到几小时

TensorFlow 使用优化的 C++ 和 NVIDIA® CUDA® 工具包编写,使模型能够在训练和推理时在 GPU 上运行,从而大幅提速

TensorFlow GPU 支持需要多个驱动和库。为简化安装并避免库冲突,建议利用 GPU 支持的 TensorFlow Docker 镜像。此设置仅需要 NVIDIA GPU 驱动并且安装 NVIDIA Docker。用户可以从预配置了预训练模型和 TensorFlow 库支持的 NGC (NVIDIA GPU Cloud) 中提取容器

CPU擅长逻辑控制、串行计算,而GPU擅长高强度计算、并行计算。CUDA是NVIDIA推出用于自家GPU的并行计算框架,cuDNN & tensorflow是一系列机器学习,深度学习库,用于训练机器学习、深度学习模型
在这里插入图片描述
2. 依赖环境准备
选取centos7.3作为基础操作系统镜像,选取适配驱动:Nvidia

GPU部署预装机器

深度学习框架:cuda、cudnn、tensorflow

由于cuda、cudnn、tensorflow等机器学习、深度学习框架,依赖python3,需要在centos7.3操作系统中集成python3
在这里插入图片描述
在这里插入图片描述

一、 nvidia-docker的安装cpu架构:x86

受够了TensorRT+cuda+opencv+ffmpeg+x264运行环境的部署的繁琐,每次新服务器上部署环境都会花费很大的精力去部署环境,听说nvidia-docker可以省去部署的麻烦,好多人也推荐使用docker方便部署,咱也在网上搜索了下,学习了下,根据网上的资料,开始安装docker学习一下,把学习记录记在这儿,听说要想使用GPU,就要安装Docker-CE和NVIDIA Container Toolkit,好的,开始。

1. 安装Dokcer-CE
首先,我的机器上没有安装过docker,要先把docker安装上,执行以下脚本,开始安装。

 curl https://get.docker.com | sh \
>   && sudo systemctl --now enable docker

安装结束后,查看Docker版本:

docker --version

结果如下:

Docker version 20.10.16, build aa7e414

CentOS7下安装docker详细教程

当基于nvidia gpu开发的docker镜像在实际部署时,需要先安装nvidia docker。安装nvidia docker前需要先安装原生docker compose

安装docker

  1. Docker 要求 CentOS 系统的内核版本高于 3.10 ,查看本页面的前提条件来验证你的CentOS 版本是否支持 Docker 。

通过 uname -r 命令查看你当前的内核版本

uname -r
uname -a

Linux gputest 3.10.0-1160.90.1.el7.x86_64 #1 SMP Thu May 4 15:21:22 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux

uname -r

3.10.0-1160.90.1.el7.x86_64

  1. 使用 root 权限登录 Centos 确保 yum 包更新到最新
sudo yum update
  1. 卸载旧版本(如果安装过旧版本的话)
yum remove docker 
docker-client 
docker-client-latest 
docker-common 
docker-latest 
docker-latest-logrotate 
docker-logrotate 
docker-selinux 
docker-engine-selinux 
docker-engine
  1. 安装需要的软件包, yum-util 提供yum-config-manager功能,另外两个是devicemapper驱动依赖的
yum install -y yum-utils device-mapper-persistent-data lvm2
  1. 设置yum源
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

在这里插入图片描述

  1. 可以查看所有仓库中所有docker版本,并选择特定版本安装
yum list docker-ce --showduplicates | sort -r
  1. 安装docker,版本号自选
yum install docker-ce-17.12.0.ce
  1. 启动并加入开机启动
systemctl start docker
systemctl status docker
systemctl enable docker
  1. 验证安装是否成功(有client和service两部分表示docker安装启动都成功了)
docker version

在这里插入图片描述

2. 安装NVIDIA Container Toolkit
在这里插入图片描述

执行以下脚本:

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
   && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
   && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

控制台输出如下:

[sudo] dingxin 的密码: OK deb
https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/KaTeX parse error: Expected 'EOF', got '#' at position 10: (ARCH) / #̲deb https://nvi…(ARCH)
/ deb
https://nvidia.github.io/nvidia-container-runtime/stable/ubuntu18.04/KaTeX parse error: Expected 'EOF', got '#' at position 10: (ARCH) / #̲deb https://nvi…(ARCH)
/ deb https://nvidia.github.io/nvidia-docker/ubuntu18.04/$(ARCH) /

安装nvidia-docker2包及其依赖

sudo apt-get update

接着执行安装nvidia-docker2:

sudo apt-get install -y nvidia-docker2

CentOS7下安装NVIDIA-Docker
依赖条件
如果使用的 Tensorflow 版本大于 1.4.0,要求 CUDA 9.0 以上版本

基于docker的测试环境的建立

测试环境基于docker构建,需要Nvidia GPU驱动的支持(不需要安装CUDA),安装好GPU驱动和docker以后,下载最新的包含tensorflow,CUDA,cudnn等的image,然后就可以运行tf_cnn_benchmark了

  1. 下载nvidia-docker安装包
$ wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker-1.0.1-1.x86_64.rpm
  1. 安装nvidia-docker
$ rpm -ivh nvidia-docker-1.0.1-1.x86_64.rpm
  1. 启动 nvidia-docker 服务
$ sudo systemctl restart nvidia-docker
  1. 执行以下命令,若结果显示 active(running) 则说明启动成功
$ systemctl status nvidia-docker.service

Active: active (running) since Fri 2023-07-21 11:15:45 CST; 1min ago

在这里插入图片描述
5. 使用 nvidia-docker查看 GPU 信息

 $ nvidia-docker run --rm nvidia/cuda nvidia-smi

二、镜像安装

1. cuda 11下的安装(可选)

sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi

在这里插入图片描述
查看已下载的镜像

sudo docker images -a

在这里插入图片描述

2. 下载tensorflow v1.15.5版本的镜像
官网下载:
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tensorflow/tags
大概1.5小时

安装testflow1.0版本(向下兼容)

docker pull nvcr.io/nvidia/tensorflow:23.03-tf1-py3

在这里插入图片描述

再次查看下载的镜像

docker image ls

image id = fc14c7fdf361为上述安装的tensorflow1.15版本容器

在这里插入图片描述

三、操作tensorflow容器

nvidia-docker run -it nvcr.io/nvidia/tensorflow:23.03-tf1-py3

格式:nvidia-docker run -it {REPOSITORY容器名称:TAG号}
在这里插入图片描述

pip list|grep tensor

jupyter-tensorboard 0.2.0
tensorboard 1.15.0
tensorflow 1.15.5+nv23.3
tensorflow-estimator 1.15.1
tensorrt 8.5.3.1

测试脚本:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 
import tensorflow as tf
hello = tf.constant('--------Hello, TensorFlow!----------')
sess = tf.Session()
sess.run(hello)

在container OS中使用命令cat /proc/driver/nvidia/version或nvcc --version可正常显示显卡驱动版本及CUDA版本

在这里插入图片描述

四、配置git

  1. 在本机生成公私钥ssh-keygen -t rsa -b 4096 -C "xx@xx.com" 默认生成的公私钥 ~/.ssh/

id_rsa.pub

id_rsa

-b 4096:b是bit的缩写

-b 指定密钥长度。对于RSA密钥,最小要求768位,默认是2048位。命令中的4096指的是RSA密钥长度为4096位。

DSA密钥必须恰好是1024位(FIPS 186-2 标准的要求)

Generating public/private rsa key pair. Enter file in which to save
the key (/Users/qa/.ssh/id_rsa): yes Enter passphrase (empty for no
passphrase): Enter same passphrase again: Your identification has been
saved in yes. Your public key has been saved in yes.pub. The key
fingerprint is: SHA256:MGbV/xx/xx lishan12@xx.com The key’s randomart
image is:
±–[RSA 4096]----+ | …OBB=Eo| | . .O+oO=o=| | = .o*+B *o.| | o o o+B =… | | S.+o . | | . o |
| . . | | . . | | . |
±—[SHA256]-----+

  1. 配置登录git的username email。为公司给你分配的用户名 密码

第一步:

git config --global user.name 'username'
git config --global user.email 'username@xx.com'

第二步: 设置永久保存

git config --global credential.helper store 

第三步:手动输入一次用户名和密码,GIT会自动保存密码,下次无须再次输入

git pull
  1. 初始化仓库 git init

  2. 拉取代码 git clone git@gitlab.xx.com:xx/xx.git
    Cloning into ‘xx-xx’…
    git@gitlab.xx.com’s password:
    Permission denied, please try again.
    git@gitlab.xx.com’s password:

遇到的问题:没有出username 和 password成对的输入项 ,而是出了password输入项

都不知道密码是啥,跟登录git库的密码不一样。

然后使用http的方式,报一个错误:

use:~/ecox # git clone https://vcs.in.ww-it.cn/ecox/ecox.git

正克隆到 ‘ecox’…

fatal: unable to access ‘https://vcs.in.ww-it.cn/ecox/ecox.git/’: SSL certificate problem: unable to get local issuer certificate

提示SSL证书错误。发现说这个错误并不重要是系统证书的问题,系统判断到这个行为会造成不良影响,所以进行了阻止,只要设置跳过SSL证书验证就可以了,那么用命令 :

git config --global http.sslVerify false

五、下载Benchmarks源码并运行

从 TensorFlow 的 Github 仓库上下载 TensorFlow Benchmarks,可以通过以下命令来下载。非常重要的参考代码:

https://github.com/tensorflow/benchmarks

我的 - settings -SSH and GPG Keys 添加公钥id_rsa.pub

拉取代码

git clone git@github.com:tensorflow/benchmarks.git

git同步远程分支到本地,拉取tensorflow对应版本的分支

git fetch origin 远程分支名xxx:本地分支名xxx
使用这种方式会在本地仓库新建分支xxx,但是并不会自动切换到新建的分支xxx,需要手动checkout,当然了远程分支xxx的代码也拉取到了本地分支xxx中。采用这种方法建立的本地分支不会和远程分支建立映射关系

root@818d19092cdc:/gpu/benchmarks# git checkout -b tf1.15 origin/cnn_tf_v1.15_compatible

在这里插入图片描述
运行不同模型
root@818d19092cdc:/gpu/benchmarks/scripts/tf_cnn_benchmarks# pwd
/gpu/benchmarks/scripts/tf_cnn_benchmarks
root@818d19092cdc:/gpu/benchmarks/scripts/tf_cnn_benchmarks#

python3 tf_cnn_benchmarks.py

真实操作:

[root@gputest ~]# docker ps

进入CONTAINER ID containerid

[root@gputest ~]# nvidia-docker exec -it 818d19092cdc /bin/bash

新开窗口

[root@gputest ~]# nvidia-smi -l 3

该命令将3秒钟输出一次GPU的状态和性能,可以通过查看输出结果来得出GPU的性能指标

在这里插入图片描述

一、resnet50模型

python3 tf_cnn_benchmarks.py --num_gpus=1 --batch_size=2 --model=resnet50 --variable_update=parameter_server

在这里插入图片描述

Running warm up
2023-07-21 09:50:55.398126: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcublas.so.12
2023-07-21 09:50:55.533068: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudnn.so.8
Done warm up
Step Img/sec total_loss
1 images/sec: 10.1 +/- 0.0 (jitter = 0.0) 7.695
10 images/sec: 10.7 +/- 0.1 (jitter = 0.1) 8.022
20 images/sec: 10.7 +/- 0.1 (jitter = 0.2) 7.269
30 images/sec: 10.7 +/- 0.1 (jitter = 0.2) 7.889
40 images/sec: 10.7 +/- 0.1 (jitter = 0.2) 8.842
50 images/sec: 10.6 +/- 0.1 (jitter = 0.2) 6.973
60 images/sec: 10.6 +/- 0.1 (jitter = 0.2) 8.124
70 images/sec: 10.6 +/- 0.0 (jitter = 0.2) 7.644
80 images/sec: 10.6 +/- 0.0 (jitter = 0.2) 7.866
90 images/sec: 10.6 +/- 0.0 (jitter = 0.3) 7.687
100 images/sec: 10.6 +/- 0.0 (jitter = 0.3) 8.779
----------------------------------------------------------------total images/sec: 10.63

二、vgg16模型

python3 tf_cnn_benchmarks.py --num_gpus=1 --batch_size=2 --model=vgg16 --variable_update=parameter_server

在这里插入图片描述

由于阿里云服务器申请的是2个G显存,所以只能跑size=1 2 和 4 ,超出会吐核

已放弃(吐核)–linux 已放弃(吐核) (core dumped) 问题分析

出现这种问题一般是下面这几种情况:

  • 1.内存越界

    2.使用了非线程安全的函数

    3.全局数据未加锁保护

    4.非法指针

    5.堆栈溢出

也就是需要检查访问的内存、资源。

可以使用 strace 命令来进行分析

在程序的运行命令前加上 strace,在程序出现:已放弃(吐核),终止运行后,就可以通过 strace 打印在控制台的跟踪信息进行分析和定位问题

方法2:docker启动普通镜像的Tensorflow

$ docker pull tensorflow/tensorflow:1.8.0-gpu-py3
$ docker tag tensorflow/tensorflow:1.8.0-gpu-py3 tensorflow:1.8.0-gpu

nvidia-docker run -it -p 8888:8888 tensorflow:1.8.0-gpu

$ nvidia-docker run -it -p 8033:8033 tensorflow:1.8.0-gpu

浏览器进入指定 URL(见启动终端回显) 就可以利用 IPython Notebook 使用 tensorflow

在这里插入图片描述

评测指标

  • 训练时间:在指定数据集上训练模型达到指定精度目标所需的时间

  • 吞吐:单位时间内训练的样本数

  • 加速效率:加速比/设备数*100%。其中,加速比定义为多设备吞吐数较单设备的倍数

  • 成本:在指定数据集上训练模型达到指定精度目标所需的价格

  • 功耗:在指定数据集上训练模型达到指定精度目标所需的功耗

在初版评测指标设计中,我们重点关注训练时间、吞吐和加速效率三项

六、保存镜像的修改

执行以下命令,保存TensorFlow镜像的修改

docker commit   -m "commit docker" CONTAINER_ID  nvcr.io/nvidia/tensorflow:18.03-py3
# CONTAINER_ID可通过docker ps命令查看。

[root@gputest ~]# docker commit -m “commit docker” 818d19092cdc nvcr.io/nvidia/tensorflow:23.03-tf1-py3
sha256:fc14c7fdf361308817161d5d0cc018832575e7f2def99fe49876d2a41391c52c

在这里插入图片描述

查看docker进程

[root@gputest ~]# docker ps

重新进入CONTAINER ID containerid

[root@gputest ~]# nvidia-docker exec -it 818d19092cdc /bin/bash

在这里插入图片描述

七、benchmarks 支持的所有参数

参数名称

描述

备注

--help

查看帮助信息

--backend

使用的框架名称,如TensorFlow,PyTorch等,必须指定

当前只支持TensorFlow,后续会增加对PyTorch的支持

--model

使用的模型名称,如alexnet、resnet50等,必须指定

请查阅所有支持的模型

--batch_size

batch size大小

默认值为32

--num_epochs

epoch的数量

默认值为1

--num_gpus

使用的GPU数量。设置为0时,仅使用CPU。

  • 在单机多卡模式下,指定每台机器使用的GPU数量;

  • 在multi-worker模式下,指定每个worker使用的GPU数量

--data_dir

输入数据的目录,对于CV任务,当前仅支持ImageNet数据集;如果没有指定,表明使用合成数据

--do_train

执行训练过程

这三个选项必须指定其中的至少一个,可以同时指定多个选项。

--do_eval

执行evaluation过程

--do_predict

执行预测过程

--data_format

使用的数据格式,NCHW或NHWC,默认为NCHW。

  • 对于CPU设备,建议使用NHWC格式

  • 对于GPU设备,建议使用NCHW格式

--optimizer

所使用的优化器,当前支持SGD、Adam和Momentum,默认为SGD

--init_learning_rate

使用的初始learning rate的值

--num_epochs_per_decay

learning rate decay的epoch间隔

如果设置,这两项必须同时指定

--learning_rate_decay_factor

每次learning rate执行decay的因子

--minimum_learning_rate

最小的learning rate值

如果设置,需要同时指定面的两项

--momentum

momentum参数的值

用于设置momentum optimizer

--adam_beta1

adam_beta1参数的值

用于设置Adam

--adam_beta2

adam_beta2参数的值

--adam_epsilon

adam_epsilon参数的值

--use_fp16

是否设置tensor的数据类型为float16

--fp16_vars

是否将变量的数据类型设置为float16。如果没有设置,变量存储为float32类型,并在使用时转换为fp16格式。

建议:不要设置

必须同时设置--use_fp16

--all_reduce_spec

使用的AllReduce方式

--save_checkpoints_steps

间隔多少step存储一次checkpoint

--max_chkpts_to_keep

保存的checkpoint的最大数量

--ip_list

集群中所有机器的IP地址,以逗号分隔

用于多机分布式训练

--job_name

任务名称,如‘ps'、’worker‘

--job_index

任务的索引,如0,1等

--model_dir

checkpoint的存储目录

--init_checkpoint

初始模型checkpoint的路径,用于在训练前加载该checkpoint,进行finetune等

--vocab_file

vocabulary文件

用于NLP

--max_seq_length

输入训练的最大长度

用于NLP

--param_set

创建和训练模型时使用的参数集。

用于Transformer

--blue_source

包含text translate的源文件,用于计算BLEU分数

--blue_ref

包含text translate的源文件,用于计算BLEU分数

--task_name

任务的名称,如MRPC,CoLA等

用于Bert

--do_lower_case

是否为输入文本使用小写

--train_file

训练使用的SQuAD文件,如train-v1.1.json

用于Bert模型,运行SQuAD, --run_squad必须指定

--predict_file

预测所使用的SQuAD文件,如dev-v1.1.json或test-v1.1.json

--doc_stride

当将长文档切分为块时,块之间取的间距大小

--max_query_length

问题包含的最大token数。当问题长度超过该值时,问题将被截断到这一长度。

--n_best_size

nbest_predictions.json输出文件中生成的n-best预测的总数

--max_answer_length

生成的回答的最大长度

--version_2_with_negative

如果为True,表明SQuAD样本中含有没有答案(answer)的问题

--run_squad

如果为True,运行SQUAD任务,否则,运行sequence (sequence-pair)分类任务

八、GPU使用注意事项

1. 如何在tensorflow中指定使用GPU资源

在配置好GPU环境的TensorFlow中 ,如果操作没有明确地指定运行设备,那么TensorFlow会优先选择GPU。在默认情况下,TensorFlow只会将运算优先放到/gpu:0上。如果需要将某些运算放到不同的GPU或者CPU上,就需要通过tf.device来手工指定

import tensorflow as tf
 
# 通过tf.device将运算指定到特定的设备上。
with tf.device('/cpu:0'):
   a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')
   b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')
with tf.device('/gpu:1'):
    c = a + b
 
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)

2. 虚拟化使用GPU的方案

在这里插入图片描述
通过KVM虚拟化实例使用CPU和内存等资源,GPU不参与虚拟化。不同容器共享使用物理GPU资源

3. 分布式TensorFlow

#coding=utf-8  
#多台机器,每台机器有一个显卡、或者多个显卡,这种训练叫做分布式训练  
import  tensorflow as tf  
#现在假设我们有A、B、C、D四台机器,首先需要在各台机器上写一份代码,并跑起来,各机器上的代码内容大部分相同  
# ,除了开始定义的时候,需要各自指定该台机器的task之外。以机器A为例子,A机器上的代码如下:  
cluster=tf.train.ClusterSpec({  
    "worker": [  
        "A_IP:2222",#格式 IP地址:端口号,第一台机器A的IP地址 ,在代码中需要用这台机器计算的时候,就要定义:/job:worker/task:0  
        "B_IP:1234"#第二台机器的IP地址 /job:worker/task:1  
        "C_IP:2222"#第三台机器的IP地址 /job:worker/task:2  
    ],  
    "ps": [  
        "D_IP:2222",#第四台机器的IP地址 对应到代码块:/job:ps/task:0  
    ]})

使用分布式的TensorFlow比较容易。只需在集群服务器中为 worker 节点分配带名字的IP。 然后 就可以手动或者自动为 worker 节点分配操作任务

. GPU 显存资源监控
一个Server端的外挂模块,提供任务特征到资源特征的映射数据集,方便后续预测模型构建以及对芯片资源能力的定义

利用 with tf.device("{device-name}") 这种写法,可以将with statement代码块中的变量或者op指定分配到该设备上。 在上面例子中,变量 W 和 b 就被分配到 /cpu:0 这个设备上。注意,如果一个变量被分配到一个设备上,读取这个变量也就要从这个设备读取,写入这个变量也将会写入到这个设备。 而 output (也就是一个 tf.matmul 矩阵乘法的计算操作,跟着一个tensor的加法的计算操作),以及后面的 loss 的计算(即对 output 调用了 f 这个函数,该函数中可能还有很多逻辑,涉及很多tensor运算的op),分配给了 /gpu:0 这个设备。

基本原则:变量放到CPU,计算放到GPU。

这时,TensorFlow实际上会将代码中定义的Graph(计算图)分割,根据指定的device placement将图的不同部分分配到不同的设备上,并且在设备间建立通信(如DMA,Direct Memory Access)。这些都不需要在应用代码层面操作。

单机多卡
当我们在一台机器上有多个GPU可用时,要利用多个GPU,代码编写方式的示意如下:

# Calculate the gradients for each model tower.
tower_grads = []
with tf.variable_scope(tf.get_variable_scope()):
  for i in xrange(FLAGS.num_gpus):
    with tf.device('/gpu:%d' % i):
      with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
        # Dequeues one batch for the GPU
        image_batch, label_batch = batch_queue.dequeue()
        # Calculate the loss for one tower of the CIFAR model. This function
        # constructs the entire CIFAR model but shares the variables across
        # all towers.
        loss = tower_loss(scope, image_batch, label_batch)
 
        # Reuse variables for the next tower.
        tf.get_variable_scope().reuse_variables()
 
        # Retain the summaries from the final tower.
        summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
 
        # Calculate the gradients for the batch of data on this CIFAR tower.
        grads = opt.compute_gradients(loss)
 
        # Keep track of the gradients across all towers.
        tower_grads.append(grads)
 
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads)

本质上分配设备的方式和单机单卡的情况是一样的,使用同样的语法。 在上例中,假设我们有2个GPU,则代码会按照相同的逻辑定义两套操作,先后分配给名为 /gpu:0 和 /gpu:1 的两个设备。

注意:

  • tensorflow的代码中cpu和gpu的设备编号默认从0开始

  • 比如我们在机器上看到有两块GPU,通过CUDA_VISIBLE_DEVICES环境变量进行控制,起了一个进程,只让0号GPU对其可见,再起一个进程,只让1号GPU对其可见,在两个进程的tensorflow代码中,都是通过/gpu:0来分别指代它们可用的GPU。

  • 上例属于in-graph,从tensorboard绘制的计算图中可以明显看出来(下文会有对比展示)

  • 上例属于数据并行

  • 上例属于同步更新

下面展示一些示例,运行的代码是以TensorFlow官网指南(https://www.tensorflow.org/guide/using_gpu )为基础的,在单机2GPU的环境以multi-tower方式运行。运行过程中记录了Tensorboard使用的summary
在这里插入图片描述
可以看到,CPU, GPU:0, GPU:1分别用三种颜色进行了标记。

重要参考资料

本文大部分内容都是看了自以下几个资料再进行试验总结出来的:

Distributed Tensorflow (TensorFlow官网): https://www.tensorflow.org/deploy/distributed

Distributed TensorFlow (TensorFlow Dev Summit 2017): https://www.youtube.com/watch?v=la_M6bCV91M&index=11&list=PLOU2XLYxmsIKGc_NBoIhTn2Qhraji53cv

Distributed TensorFlow (TensorFlow Dev Summit 2018): https://www.youtube.com/watch?v=-h0cWBiQ8s8 (本文没有包括Dev Summit 2018这个talk的内容,这里面除了基本原理之外,只讲了TensorFlow如何支持All Reduce,但是只适用于单机多卡,并且是High Level API。多机多卡的方面演讲者也只推荐了Horovod这种方式。)

另外还有官网关于使用GPU的指南: https://www.tensorflow.org/guide/using_gpu

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1209603.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

20231114在HP笔记本的ubuntu20.04系统下向RealmeQ手机发送PDF文件

20231114在HP笔记本的ubuntu20.04系统下向RealmeQ手机发送PDF文件 2023/11/14 14:11 手机:Realme Q 笔记本电脑:HP https://item.jd.com/100012583174.html 惠普(HP)战66 三代AMD版 14英寸轻薄笔记本电脑(锐龙7nm 六核…

旺店通·企业版对接打通金蝶云星空查询调拨单接口与分布式调入单新增接口

旺店通企业版对接打通金蝶云星空查询调拨单接口与分布式调入单新增接口 源系统:旺店通企业版 旺店通是北京掌上先机网络科技有限公司旗下品牌,国内的零售云服务提供商,基于云计算SaaS服务模式,以体系化解决方案,助力零售企业数字化…

Qt QWebEngine 加载网页及交互,实现C++与JS 相互调用

目录 前言1、QtWebEngine介绍2、安装3、核心类介绍3.1 QWebEngineView3.2 QWebEnginePage3.3 QWebEngineProfile3.4 QWebEngineHistory3.5 QWebEngineSettings 4、加载网页5、C调用JS5.1 无返回值5.2 有返回值 6、JS调用C6.1 新建WebObject 类继承自QObject。6.2 将WebObject对…

前端入门(二)js速成与vue脚手架搭建

文章目录 JS常用API操作对象操作对象增删改查js深拷贝、浅拷贝js实现深拷贝的方式 安全访问 JS常用API操作 对象操作 对象增删改查 创建对象 let obj {}新增属性 obj.a 1 、obj[a] 1修改属性 obj.a ‘a’查询属性 obj.a 、obj[a]删除属性 delete obj.a js深拷贝、浅拷贝…

day08_子网划分与子网掩码

什么是子网划分? 1、概念:借主机位给网络位使用,以此来达到把一个大网段划分为n个儿子网段的目的,2. 为何要进行子网划分?3、子网掩码:就是对ip地址打记号4、 网络地址的计算机方式:ip地址与子网掩码都转换成二进制&a…

如何实现Redisson分布式锁

首先,不要将分布式锁想的太复杂,如果我们只是平时业务中去使用,其实不算难,但是很多人写的文章不能让人快速上手,接下来,一起看下Redisson分布式锁的快速实现 Redisson 是一个在 Redis 的基础上实现的 Java…

Postman配置环境请求接口

一、准备配置dev、test、demo、eprod 二、使用切换环境变量调用接口 三、使用登录接口自动获取token

python数据处理作业11:建一个5*3的随机数组和一个3*2的数组,其元素为1,2,3,4,5,6,求两矩阵的积

每日小语 打碎的杯子,烫伤的手,对菩萨是堪忍,因为他在里面得悟甚深之法,心生欢喜。 可是对一般人来说,一生何止打破千百个杯子?何止烫伤过千百次手?他只是痛苦地忍受,只记得下次要…

创建具有负载平衡和集群的可扩展 Node.js 应用程序

创建具有负载平衡和集群的可扩展 Node.js 应用程序 负载平衡是提高应用程序性能、可扩展性和可用性的一项重要技术。当客户端向负载均衡器发出请求时,负载均衡器根据预定义的规则将请求分发到不同的实例。 可以使用cluster集群模块或 PM2 等工具根据负载均衡器的流…

谈谈一个IT杂家的职业生涯规划,你的护城河被AI 攻破了么

文章大纲 没有顶会的从业者:成为深度学习老中医AIGC 还未能克服的难点:忽然的惊喜 -- 大模型的智能涌现未来还能做点什么,从计算机视觉的发展走向看T 字型人才与护城河成为更加熟练使用人工智能的人 参考文献与学习路径 我的职业生涯将近十年…

【多项式回归】拟合有噪声的正弦曲线

先导入模块并创建数据: from sklearn.preprocessing import PolynomialFeatures as PF from sklearn.linear_model import LinearRegression import numpy as nprnd np.random.RandomState(42) #设置随机数种子 X rnd.uniform(-3, 3, size100) y np.sin(X) rnd…

飞书开发学习笔记(六)-网页应用免登

飞书开发学习笔记(六)-网页应用免登 一.上一例的问题修正 在上一例中,飞书登录查看网页的界面显示是有误的,看了代码,理论上登录成功之后,应该显示用户名等信息。 最后的res.nickName是用户名,res.i18nName.en_us是英…

冲击900亿美元估值!邀约路演、秘密交表的Shein上市有望

双十一的狂欢刚刚结束,Shein即将赴美上市的消息又在电商圈里投下一枚重磅炸弹。 继被媒体曝光其寻求900亿美金估值后,最新的消息称其已邀请投资人参与路演,且已秘密完成交表。这个神秘的中国独角兽,离敲钟登陆美股的日子越来越近…

爬虫----robots.txt 协议简介

文章目录 robots.txt 是一个用于指示网络爬虫(web spider或web robot)如何与网站上的内容进行交互的协议。这个文件被网站管理员放置在网站的根目录下,用于告知爬虫哪些部分的网站是可以被抓取的,哪些是不被允许的。以下是 robots.txt 协议的一些关键要点: 控制爬虫访问:…

“技能兴鲁”职业技能大赛-网络安全赛项-学生组初赛 WP

Crypto BabyRSA 共模攻击 题目附件: from gmpy2 import * from Crypto.Util.number import *flag flag{I\m not gonna tell you the FLAG} # 这个肯定不是FLAG了,不要交这个咯p getPrime(2048) q getPrime(2048) m1 bytes_to_long(bytes(flag.e…

MHA的那些事儿

什么是MHA? masterhight availability:基于主库的高可用环境下,主从复制和故障切换 主从的架构 MHA至少要一主两从 出现的目的:解决MySQL的单点故障问题。一旦主库崩溃,MHA可以在0-30s内自动完成故障切换 MHA使用的…

毫米波雷达模块的目标检测与跟踪

毫米波雷达技术在目标检测与跟踪方面具有独特的优势,其高精度、不受光照影响等特点使其在汽车、军事、工业等领域广泛应用。本文深入探讨毫米波雷达模块在目标检测与跟踪方面的研究现状、关键技术以及未来发展方向。 随着科技的不断进步,毫米波雷达技术在…

深入解析 Azure 机器学习平台:架构与组成部分

Azure机器学习平台是Microsoft Azure提供的一种云上机器学习服务,为开发者和数据科学家提供了一个全面且易于使用的环境来创建、训练、部署和管理机器学习模型。本文将对Azure机器学习平台的基本架构和组成部分进行深入解析,帮助读者全面了解该平台的工作…

10-18 请求与相应1

前后台联调 前台通过一个表单, action写的servlet绑定的url,提交表单,请求我们servlet的doGet()/ doPost()方法 问题: 1.后台怎么获取前端的提交,请求的数据?底层:TCP通信,socket的得到输入流,读取数据 2.后台处理请求之后,怎么把结果给到前端?底层:TCP通信,socket的得到输入…

VR全景:打造虚拟政务服务,打通服务群众“最后一公里”

大家对政务大厅的工作效率可能已经司空见惯,办事窗口少,而需要办理的群众和业务却很多,很多去政务大厅办理业务的,排队几个小时也是常有的。并且在传统政务服务中,办事流程一般都较为复杂、耗时长,往往需要…