AI大模型低成本快速定制秘诀:RAG和向量数据库

news2024/11/26 17:46:27

文章目录

  • 1. 前言
  • 2. RAG和向量数据库
  • 3. 论坛日程
  • 4. 购票方式

1. 前言

  当今人工智能领域,最受关注的毋庸置疑是大模型。然而,高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。

  这种背景下,向量数据库凭借其独特的优势,成为解决低成本快速定制大模型问题的关键所在。

  向量数据库是一种专门用于存储和处理高维向量数据的技术。它采用高效的索引和查询算法,实现了海量数据的快速检索和分析。如此优秀的性能之外,向量数据库还可以为特定领域和任务提供定制化的解决方案。

  科技巨头诸如腾讯、阿里等公司纷纷布局向量数据库研发,力求在大模型领域实现突破。大量中小型公司也借助向量数据库的能力快速进军大模型,抢占市场先机。

  除此之外,近期发布的多个关于向量数据库的行业研究报告也表明,向量数据库将成为未来数据存储和处理的主流趋势,市场规模有望迅速扩大。

  可以说,向量数据库已然成为了推动人工智能技术发展的重要驱动力。在这场技术变革中,率先抓住向量数据库的发展机遇,就更有可能引领未来的科技潮流。

  上图为VectorDB 应用流程。对应链接为:https://www.pinecone.io/learn/vector-database/。

  目前,低成本快速定制大模型已经成为了现实。

  对很多开发者而言,微调大模型的学习门槛并不高,自学也能简单上手,但是在实际应用中还是会出现各种各样的问题。

2. RAG和向量数据库

  随着技术的不断发展,大模型已经能够帮助个人和企业提升生产力,但受限于数据实时性、隐私性和上下文长度限制等三大挑战,向量数据库和RAG应运而生。RAG,又称“检索增强生成”,独特地结合了检索和生成两个环节。它不仅仅是一个生成模型,更是一个结合了embedding向量搜索和大模型生成的系统。首先,RAG利用embedding模型将问题和知识库内容转换为向量,并基于相似性找到top-k的相关文档。接着,这些文档被提供大模型,进而生成答案。这种方法不仅提高了答案的质量,更重要的是,它也为模型的输出提供了可解释性。除了embedding检索器以外,也可结合BM25 检索器进行集成学习,从而达到更好的检索效果。

def get_retriever(
        self,
        docs_chunks,
        emb_chunks,
        emb_filter=None,
        k=2,
        weights=(0.5, 0.5),
):
    bm25_retriever = BM25Retriever.from_documents(docs_chunks)
    bm25_retriever.k = k

    emb_retriever = emb_chunks.as_retriever(
        search_kwargs={
            "filter": emb_filter,
            "k": k,
            "search_type": "mmr",
        }
    )
    return EnsembleRetriever(
        retrievers={"bm25": bm25_retriever, "chroma": emb_retriever},
        weights=weights,
    )

  向量数据库是一种专门用于存储和查询向量数据的数据库系统,与传统数据库相比,向量数据库使用向 量化计算,能够高速地处理大规模的复杂数据;并可以处理高维数据,例如图像、音频和视频等,解决传统关系型数据库中的痛点; 同时,向量数据库支持复杂的查询操作,也可以轻松地扩展到多个节点,以处理更大规模的数据。

  如何发挥外挂知识库和向量数据库的最大价值,如何从 0 到 1 做一款向量数据库,如何设计技术架构,关键技术瓶颈是如何突破的,如何用 RAG 和向量数据库搭建企业知识库,技术实现过程中容易走哪些弯路,有没有什么避坑指南等等问题和困惑,都是技术应用和行业发展的阻碍。

  可见,对于 RAG 和向量数据库领域而言,技术实践和一线的落地场景依然需要持续探索和挖掘。

  除了最佳实践外,大模型领域一直无法回避的挑战就是变化太快。

  OpenAI 首届开发者大会在几天前彻底引爆,并被广泛定义为改变了现有的大模型格局。这会对向量数据库行业的发展有什么影响呢?RAG 又再次走到了台前?这个领域现在还值得投入吗?未来又有什么技术能替代它呢……

  类似这种关于技术未来和技术视野的思考与探讨,在快速变化的时代愈加重要,并将指导大模型领域的企业优化战略布局,引导从业者完成职业升级和职业规划。

  基于此,机器之心专门策划了以「大模型时代的向量数据库」为主题的 AI 技术论坛。

  论坛持续两天,我们不仅关注 RAG 和向量数据库的技术实现和技术突破,更聚焦产业最佳实践,看看向量数据库在大模型时代如何高效落地,有哪些应用场景。除此之外,向量数据库的未来将何去何从,企业和个人又如何能借势完成战略布局和职业升级呢?

  相信这场技术论坛一定会带给你启发和收获。其中两位主题演讲神秘嘉宾也已全部到位,分别是复旦大学张奇教授和微软亚洲研究院首席研究员陈琪老师,快来看看他们的分享内容和最新日程吧。

3. 论坛日程

  本次论坛会聚了国内众多知名高的专家学者、互联网大厂和AI独角兽的技术骨干等各界精英,以“低成本快速定制大模型”为主题,着重探讨“RAG和向量数据库的理论与实践”两个方面的问题。本次论坛内容丰富多样,不仅在理论层面上进行了深入的讲解,而且从实践层面上讲解了向量数据库、知识库等方面的最佳实践。

大模型工作原理深入讲解:

  • 大规模向量索引与向量数据库的归一化
  • 从混乱到秩序:揭秘生成式搜索背后的概率
  • GTE:预训练语言模型驱动的文本Embedding
  • jina-embeddings-v2:打破向量模型512长度限制的

大模型向量数据库、知识库的最佳实践:

  • 大语言模型知识能力获取与知识问答实践
  • 腾讯云向量数据库的技术创新与最佳实践
  • 阿里云向量检索增强大模型对话系统最佳实践
  • 百度智能云BES在大规模向量检索场景的探索实践
  • 火山引擎向量数据库VikingDB技术演进及应用
  • DingoDB多模向量数据库:大模型时代的数据引擎
  • 搜索增强型(RAG)AI原生向量数据库AwaDB技术创新与实践
  • 星环科技分布式向量数据库提升LLM知识库召回精度最佳实践
  • 利用向量数据库搭建企业知识库的优化实践
  • 使用向量数据库快速构建本地轻量图片搜索引擎
  • 向量数据库在大模型时代的应用

职业规划与未来展望:

  • 聊聊技术和职业规划
  • 大模型时代向量数据库新未来

  本场论坛重在行业技术交流,嘉宾分享均是技术干货,不夹带产品广告。(如想了解相关产品或项目,欢迎移步展位区)
在这里插入图片描述

4. 购票方式

  双十一购票优惠,双十一优惠期间,论坛 2 天通票,最低仅售 1999 元 / 张,含 2 天五星级酒店午餐自助,快来报名吧!

  官方报名链接为:https://www.bagevent.com/event/sales/l38st4zknru6v8r21rq2naznjrvqh1xs,即日起至 11 月 19 日 23:55 时,购票参会即可享门票直减 2000 元优惠福利,优惠票价先到先得。

  关于本次活动商务合作、团购、发票、内容等相关问题,欢迎添加本场活动小助手 Alice可通过邮件(jiayaning@jiqizhixin.com)或者私信本人进行咨询。

  本场论坛活动重在行业交流,如果你有任何创意或是反馈,都欢迎一起聊聊~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1206111.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Python Opencv】Opencv画图形

文章目录 前言一、画图形1.1 画线1.2 画矩形1.3 画圆1.4 画椭圆1.5 添加文本 总结 前言 在计算机视觉和图像处理中,OpenCV不仅可以处理图像和视频,还提供了一组功能强大的工具,用于在图像上绘制各种形状和图形。这些功能使得我们能够在图像上…

arm2 day6

串口实现单个字符的收发 main.c uart4.c uart4.h

107.am40刷机折腾记3-firefly镜像的烧写

1. 平台: rk3399 am40 4g32g 2. 内核:firefly的内核(整体镜像) 3. 交叉编译工具 :暂时不编译 4. 宿主机:ubuntu18.04 5. 需要的素材和资料:boot-am40-20231113.img(自编译) 准备的情况&a…

数据库表的设计——范式

目录 1. 设计数据表需要注意的点 2. 范式 2.1 范式简介 2.2 范式有哪些? 2.3 第一范式(1NF) 2.4 第二范式(2NF) 2.5 第三范式(3NF) 2.6 小结 1. 设计数据表需要注意的点 (1)首先要考虑设计这张表的用途,这张表都要存放什…

Docker的安装配置与使用

1、docker安装与启动 首先你要保证虚拟机所在的盘要有至少20G的空间,因为docker开容器很吃空间的,其次是已经安装了yum依赖 yum install -y epel-release yum install docker-io # 安装docker配置文件 /etc/sysconfig/docker chkconfig docker on # 加…

数据库 并发控制

多用户数据库系统:允许多个用户同时使用同一个数据库的数据库系统 交叉并发方式:在单处理机系统中,事务的并行执行实际上是这些并行事务的并行操作轮流交叉运行 同时并发方式:在多处理机系统中,每个处理机可以运行一个…

手机厂商参与“百模大战”,vivo发布蓝心大模型

在2023 vivo开发者大会上,vivo发布自研通用大模型矩阵——蓝心大模型,其中包含十亿、百亿、千亿三个参数量级的5款自研大模型,其中,10亿量级模型是主要面向端侧场景打造的专业文本大模型,具备本地化的文本总结、摘要等…

PostgreSQL 机器学习插件 MADlib 安装与使用

MADlib 一个可以在数据库上运行的开源机器学习库,支持 PostgreSQL 和 Greenplum 等数据库;并提供了丰富的分析模型,包括回归分析,决策树,随机森林,贝叶斯分类,向量机,风险模型&#…

JVM如何运行,揭秘Java虚拟机运行时数据区

目录 一、概述 二、程序计数器 三、虚拟机栈 四、本地方法栈 五、本地方法接口 六、堆 (一)概述 (二)堆空间细分 七、方法区 一、概述 不同的JVM对于内存的划分方式和管理机制存在部分差异,后续针对HotSpot虚…

【教学类-17-03】20231105《世界杯随机参考图七巧板 3份一页》(大班)

效果展示: 单页效果 多页效果 预设样式: 背景需求: 2022年11月24日,大1班随机抽取的9位幼儿制作了9张拼图,发现以下三个问题: 1、粉红色辅助纸选择量多——9份作业有4位幼儿的七巧板人物是粉红色的 2、…

【2021集创赛】Risc-v杯三等奖:基于E203 ShuffleNet的图像识别SoC

本作品参与极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动。 团队介绍 参赛单位:中国科学技术大学 队伍名称:Supernova 总决赛奖项:三等奖 1.项目简介 本设计以E203处理器为核心,添加协处理器、神经网…

高频SQL50题(基础题)-5

文章目录 主要内容一.SQL练习题1.602-好友申请:谁有最多的好友代码如下(示例): 2.585-2016年的投资代码如下(示例): 3.185-部门工资前三高的所有员工代码如下(示例): 4.1667-修复表中的名字代码…

设计模式之工厂模式 ( Factory Pattern )(1)

其他设计模式也会后续更新… 设计模式其实需要有一定开发经验才好理解,对代码有一定的设计要求,工作中融入才是最好的 工厂模式 ( Factory Pattern ) 工厂模式(Factory Pattern)提供了一种创建对象的最佳方式 工厂模式在创建对…

工业控制(ICS)学习笔记

目标:工业互联网安全的比赛 工控CTF之协议分析1——Modbus_ctf modbus-CSDN博客 常见的工控协议有:Modbus、MMS、IEC60870、MQTT、CoAP、COTP、IEC104、IEC61850、S7comm、OMRON等 不用看了,没太多技术含量,做了一会发现全得看答案…

【工程实践】Docker使用记录

前言 服务上线经常需要将服务搬到指定的服务器上,经常需要用到docker,记录工作中使用过dcoker指令。 1.写Dockerfile 1.1 全新镜像 FROM nvidia/cuda:11.7.1-devel-ubuntu22.04ENV WORKDIR/data/Qwen-14B-Chat WORKDIR $WORKDIR ADD . $WORKDIR/RUN ap…

Python 邮件发送(163为例)

代码 import smtplib import socket from email.mime.text import MIMEText from email.header import Headerdef send_mail():# 设置发件人、收件人、主题、内容from_address 18847097110163.comto_address 963268595qq.comsubject test emailbody hahahhahaha# SMTP邮件…

向量数据库的分类概况

保存和检索矢量数据的五种方法: 像 Pinecone 这样的纯矢量数据库 全文搜索数据库,例如 ElasticSearch 矢量库,如 Faiss、Annoy 和 Hnswlib 支持矢量的NoSQL 数据库,例如 MongoDB、Cosmos DB 和 Cassandra 支持矢量的SQL 数据库&am…

农业水土环境建模流程、DEM数据制备、土地利用数据制备、土壤数据制备、气象数据制备、农业措施数据制备、参数率定与结果验证、农业面源污染分析

目录 一、农业水土环境建模概述 二、ArcGIS入门 三、农业水土环境建模流程 四、DEM数据制备流程 五、土地利用数据制备流程 六、土壤数据制备流程 七、气象数据制备流程 八、农业措施数据制备流程 九、参数率定与结果验证 十、模型结果分析及地图制作 十一、农业土壤…

MT8788核心板主要参数介绍_联发科MTK安卓核心板智能模块

MT8788核心板是一款功能强大的4G全网通安卓智能模块,具有超高性能和低功耗特点。该模块采用联发科AIOT芯片平台。 MT8788核心板搭载了12nm制程的四个Cortex-A73和四个Cortex-A53处理器,最高主频可达2.0GHZ。它还配备了4GB64GB(2GB16GB、3GB32GB)的内存&a…

4004 DC音频转换器原理

4004是一款低噪声、固定频率360KHz的电荷泵型DC DC转换器,在输入电压2.8V到5V的情况下,恒定输出5V电压,电压精度为:3%,输出电流达到300mA。4004外部零件少,非常适合小型的电池供电应用。4004优化后的电荷泵…