c语言从入门到实战——初识指针

news2025/1/11 14:05:43

初识指针

  • 前言
  • 1. 内存和地址
    • 1.1 内存
    • 1.2 究竟该如何理解编址
  • 2. 指针变量和地址
    • 2.1 取地址操作符(&)
    • 2.2 指针变量和解引用操作符(*)
      • 2.2.1 指针变量
      • 2.2.2 如何拆解指针类型
      • 2.2.3 解引用操作符
    • 2.3 指针变量的大小
  • 3. 指针变量类型的意义
    • 3.1 指针的解引用
    • 3.2 指针+-整数
    • 3.3 void*指针
  • 4. const修饰指针
    • 4.1 const修饰变量
    • 4.2 const修饰指针变量
  • 5. 指针运算
    • 5.1 指针+-整数
    • 5.2 指针-指针
    • 5.3 指针的关系运算
  • 6. 野指针
    • 6.1 野指针成因
    • 6.2 如何规避野指针
      • 6.2.1 指针初始化
      • 6.2.2 小心指针越界
      • 6.2.3 指针变量不再使用时,及时置NULL,指针使用之前检查有效性
      • 6.2.4 避免返回局部变量的地址
  • 7. assert断言
  • 8. 指针的使用和传址调用
    • 8.1 strlen的模拟实现
    • 8.2 传值调用和传址调用


前言

C语言指针是一种变量,它存储了另一个变量的内存地址。通过指针,我们可以直接访问内存中的数据,从而实现灵活的数据操作。


1. 内存和地址

1.1 内存

在讲内存和地址之前,我们想有个生活中的案例:

假设有一栋宿舍楼,把你放在楼里,楼上有100个房间,但是房间没有编号,你的一个朋友来找你玩,如果想找到你,就得挨个房子去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:

一楼:101102103...
二楼:201202203....
...

有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你。

生活中,每个房间有了房间号,就能提高效率,能快速的找到房间。

如果把上面的例子对照到计算中,又是怎么样呢?

我们知道计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是8GB/16GB/32GB等,那这些内存空间如何高效的管理呢?

其实也是把内存划分为一个个的内存单元,每个内存单元的大小取1个字节。

计算机中常见的单位(补充):
一个比特位可以存储一个2进制的位1或者0

数据存储单位

在这里插入图片描述
在这里插入图片描述
其中,每个内存单元,相当于一个学生宿舍,一个人字节空间里面能放8个比特位,就好比同学们住的八人间,每个人是一个比特位。

每个内存单元也都有一个编号(这个编号就相当于宿舍房间的门牌号),有了这个内存单元的编号,CPU就可以快速找到一个内存空间。

在这里插入图片描述
生活中我们把门牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语言中给地址起了新的名字叫:指针。

所以我们可以理解为:内存单元的编号==地址==指针

1.2 究竟该如何理解编址

CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,而因为内存中字节很多,所以需要给内存进行编址(就如同宿舍很多,需要给宿舍编号一样)。

计算机中的编址,并不是把每个字节的地址记录下来,而是通过硬件设计完成的。

钢琴、吉他上面没有写上“都瑞咪发嗦啦”这样的信息,但演奏者照样能够准确找到每一个琴弦的每一个位置,这是为何?因为制造商已经在乐器硬件层面上设计好了,并且所有的演奏者都知道。本质是一种约定出来的共识!硬件编址也是如此

在这里插入图片描述
首先,必须理解,计算机内是有很多的硬件单元,而硬件单元是要互相协同工作的。所谓的协同,至少相互之间要能够进行数据传递。但是硬件与硬件之间是互相独立的,那么如何通信呢?答案很简单,用"线"连起来。而CPU和内存之间也是有大量的数据交互的,所以,两者必须也用线连起来。不过,我们今天关心一组线,叫做地址总线。

我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表示0,1【电脉冲有无】,那么一根线,就能表示2种含义,2根线就能表示4种含义,依次类推。32根地址线,就能表示2^32种含义,每一种含义都代表一个地址。地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传入CPU内寄存器。

2. 指针变量和地址

2.1 取地址操作符(&)

理解了内存和地址的关系,我们再回到C语言,在C语言中创建变量其实就是向内存申请空间,比如:

#include <stdio.h>
int main()
{
	int a = 10;
	return 0;
}

在这里插入图片描述
比如,上述的代码就是创建了整型变量a,内存中申请4个字节,用于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:

在这里插入图片描述
那我们如何能得到a的地址呢?

这里就得学习一个操作符(&)-取地址操作符

#include <stdio.h>
int main()
{
	int a = 10;
	&a; //取出a的地址
	printf("%p\n", &a);
	return 0;
}

按照我画图的例子,会打印处理:006FFD70

&a取出的是a所占4个字节中地址较小的字节的地址
在这里插入图片描述

编译器每次运行,分配的地址不一样

虽然整型变量占用4个字节,我们只要知道了第一个字节地址,顺藤摸瓜访问到4个字节的数据也是可行的。

2.2 指针变量和解引用操作符(*)

2.2.1 指针变量

那我们通过取地址操作符(&)拿到的地址是一个数值,比如:0x006FFD70,这个数值有时候也是需要 存储起来,方便后期再使用的,那我们把这样的地址值存放在哪里呢?

答案是:指针变量中。

比如:

#include <stdio.h>
int main()
{
	int a = 10;
	int* pa = &a; //取出a的地址并存储到指针变量pa中
	return 0;
	}

指针变量也是一种变量,这种变量就是用来存放地址的,存放在指针变量中的值都会理解为地址

2.2.2 如何拆解指针类型

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?

int a = 10;
int * pa = &a;

这里pa左边写的是 int** 是在说明pa是指针变量,而前面的 int 是在说明pa指向的是整型(int)类型的对象。

在这里插入图片描述
那如果有一个char类型的变量chch的地址,要放在什么类型的指针变量中呢?

char ch = 'w';
pc = &ch; //pc 的类型怎么写呢?

2.2.3 解引用操作符

我们将地址保存起来,未来是要使用的,那怎么使用呢?

在现实生活中,我们使用地址要找到一个房间,在房间里可以拿去或者存放物品。 C语言中其实也是一样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针)指向的对象,这里必须学习一个操作符叫解引用操作符(*)。

#include <stdio.h> 
int main()
{
	int a = 100;
	int* pa = &a;
	*pa = 0;
	return 0;
}

上面代码中第7行就使用了解引用操作符, *pa 的意思就是通过pa中存放的地址,找到指向的空间,*pa其实就是a变量了;所以*pa=0,这个操作符是把a改成了0.

有读者肯定在想,这里如果目的就是把a改成0的话,写成 a = 0; 不就完了,为啥非要使用指针呢?

其实这里是把a的修改交给了pa来操作,这样对a的修改,就多了一种的途径,写代码就会更加灵活,后期慢慢就能理解了。

2.3 指针变量的大小

前面的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产生的2进制序列当做一个地址,那么一个地址就是32个bit位,需要4个字节才能存储。

如果指针变量是用来来存放地址的,那么指针变的大小就得是4个字节的空间才可以。

同理64位机器,假设有64根地址线,一个地址就是64个二进制位组成的二进制序列,存储起来就需要8个字节的空间,指针变的大小就是8个字节。

#include <stdio.h>
//指针变量的大小取决于地址的大小
//32位平台下地址是32个bit位(即4个字节)
//64位平台下地址是64个bit位(即8个字节)
int main()
{
	printf("%zd\n", sizeof(char *));
	printf("%zd\n", sizeof(short *));
	printf("%zd\n", sizeof(int *));
	printf("%zd\n", sizeof(double *));
	return 0;
}

在这里插入图片描述

结论:

  • 32位平台下地址是32个bit位,指针变量大小是4个字节
  • 64位平台下地址是64个bit位,指针变量大小是8个字节
  • 注意指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的。

3. 指针变量类型的意义

指针变量的大小和类型无关,只要是指针变量,在同一个平台下,大小都是一样的,为什么还要有各种各样的指针类型呢?

其实指针类型是有特殊意义的,我们接下来继续学习。

3.1 指针的解引用

对比,下面2段代码,主要在调试时观察内存的变化。

//代码1
#include <stdio.h>
int main()
{
	int n = 0x11223344;
	int *pi = &n;
	*pi = 0;
	return 0;
}
//代码2
#include <stdio.h>
int main()
{
	int n = 0x11223344;
	char *pc = (char *)&n;
	*pc = 0;
	return 0;
}

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第一个字节改为0。

结论:指针的类型决定了,对指针解引用的时候有多大的权限(一次能操作几个字节)。

比如: char* 的指针解引用就只能访问一个字节,而 int* 的指针的解引用就能访问四个字节。

3.2 指针±整数

先看一段代码,调试观察地址的变化。

#include <stdio.h>
int main()
{
	int n = 10;
	char *pc = (char*)&n;
	int *pi = &n;
	printf("%p\n", &n);
	printf("%p\n", pc);
	printf("%p\n", pc+1);
	printf("%p\n", pi);
	printf("%p\n", pi+1);
	return 0;
}

代码运行的结果如下:
在这里插入图片描述
我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。

这就是指针变量的类型差异带来的变化。

结论:指针的类型决定了指针向前或者向后走一步有多大(距离)。

3.3 void*指针

在指针类型中有一种特殊的类型是 void* 类型的,可以理解为无具体类型的指针(或者叫泛型指针),这种类型的指针可以用来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进行指针的±整数和解引用的运算。

举例:

#include <stdio.h>
int main()
{
int a = 10;
int* pa = &a;
char* pc = &a;
return 0;
}

在上面的代码中,将一个int类型的变量的地址赋值给一个char*类型的指针变量。编译器给出了一个警告(如下图),是因为类型不兼容。而使用void*类型就不会有这样的问题。
在这里插入图片描述
使用void*类型的指针接收地址:

#include <stdio.h>
int main()
{
	int a = 10;
	void* pa = &a;
	void* pc = &a;
	*pa = 10;
	*pc = 0;
	return 0;
}

VS编译代码的结果:

在这里插入图片描述

这里我们可以看到, void* 类型的指针可以接收不同类型的地址,但是无法直接进行指针运算。

那么 void* 类型的指针到底有什么用呢?

一般 void* 类型的指针是使用在函数参数的部分,用来接收不同类型数据的地址,这样的设计可以实现泛型编程的效果。

4. const修饰指针

4.1 const修饰变量

变量是可以修改的,如果把变量的地址交给一个指针变量,通过指针变量的也可以修改这个变量。

但是如果我们希望一个变量加上一些限制,不能被修改,怎么做呢?这就是const的作用。

#include <stdio.h>
int main()
{
	int m = 0;
	m = 20; //m是可以修改的
	const int n = 0;
	n = 20; //n是不能被修改的
	return 0;
}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n进行修改,就不符合语法规则,就报错,致使没法直接修改n。

但是如果我们绕过n,使用n的地址,去修改n就能做到了,虽然这样做是在打破语法规则。

#include <stdio.h>
int main()
{
	const int n = 0;
	printf("n = %d\n", n);
	int*p = &n;
	*p = 20;
	printf("n = %d\n", n);
	return 0;
}

输出结果:

在这里插入图片描述
我们可以看到这里一个确实修改了,但是我们还是要思考一下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n,那接下来怎么做呢?

4.2 const修饰指针变量

我们看下面代码,来分析

#include <stdio.h>
//代码1
void test1()
{
	int n = 10;
	int m = 20;
	int *p = &n;
	*p = 20; //ok?
	p = &m; //ok?
}
void test2()
{
//代码2
	int n = 10;
	int m = 20;
	const int* p = &n;
	*p = 20; //ok?
	p = &m; //ok?
}
void test3()
{
	int n = 10;
	int m = 20;
	int *const p = &n;
	*p = 20; //ok?
	p = &m; //ok?
}
void test4()
{
	int n = 10;
	int m = 20;
	int const * const p = &n;
	*p = 20; //ok?
	p = &m; //ok?
}
int main()
{
//测试无const修饰的情况
	test1();
//测试const放在*的左边情况
	test2();
//测试const放在*的右边情况
	test3();
//测试*的左右两边都有const
	test4();
	return 0;
}

结论:const修饰指针变量的时候?

  • const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本身的内容可变。
  • const如果放在*的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

5. 指针运算

指针的基本运算有三种,分别是:

  • 指针±整数
  • 指针-指针
  • 指针的关系运算

5.1 指针±整数

因为数组在内存中是连续存放的,只要知道第一个元素的地址,顺藤摸瓜就能找到后面的所有元素。

int arr[10] = {1,2,3,4,5,6,7,8,9,10}; 

在这里插入图片描述

#include <stdio.h>
//指针+- 整数
int main()
{
	int arr[10] = {1,2,3,4,5,6,7,8,9,10};
	int *p = &arr[0];
	int i = 0;
	int sz = sizeof(arr)/sizeof(arr[0]);
	for(i=0; i<sz; i++)
	{
	printf("%d ", *(p+i)); //p+i 这里就是指针+整数
	}
	return 0;
}

5.2 指针-指针

//指针-指针
#include <stdio.h>
int my_strlen(char *s)
{
	char *p = s;
	while(*p != '\0' )
	p++;
	return p-s;
}
int main()
{
	printf("%d\n", my_strlen("abc"));
	return 0;
}

5.3 指针的关系运算

//指针的关系运算
#include <stdio.h>
int main()
{
	int arr[10] = {1,2,3,4,5,6,7,8,9,10};
	int *p = &arr[0];
	int i = 0;
	int sz = sizeof(arr)/sizeof(arr[0]);
	while(p<arr+sz) //指针的大小比较
	{
	printf("%d ", *p);
	p++;
	}
	return 0;
}

6. 野指针

概念:野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

6.1 野指针成因

  1. 指针未初始化
#include <stdio.h>
int main()
{
	int *p; //局部变量指针未初始化,默认为随机值
	*p = 20;
	return 0;
}
  1. 指针越界访问
#include <stdio.h>
int main()
{
	int arr[10] = {0};
	int *p = &arr[0];
	int i = 0;
	for(i=0; i<=11; i++)
	{
//当指针指向的范围超出数组arr的范围时,p就是野指针
	*(p++) = i;
	}
	return 0;
}
  1. 指针指向的空间释放
#include <stdio.h>
int* test()
{
	int n = 100;
	return &n;
}
int main()
{
	int*p = test();
	printf("%d\n", *p);
	return 0;
}

6.2 如何规避野指针

6.2.1 指针初始化

如果明确知道指针指向哪里就直接赋值地址,如果不知道指针应该指向哪里,可以给指针赋值NULL.

NULL 是C语言中定义的一个标识符常量,值是00也是地址,这个地址是无法使用的,读写该地址会报错

#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif

初始化如下:

#include <stdio.h>
int main()
{
	int num = 10;
	int*p1 = &num;
	int*p2 = NULL;
	return 0;
}

6.2.2 小心指针越界

一个程序向内存申请了哪些空间,通过指针也就只能访问哪些空间,不能超出范围访问,超出了就是越界访问。

6.2.3 指针变量不再使用时,及时置NULL,指针使用之前检查有效性

当指针变量指向一块区域的时候,我们可以通过指针访问该区域,后期不再使用这个指针访问空间的时候,我们可以把该指针置为NULL

因为约定俗成的一个规则就是:只要是NULL指针就不去访问,同时使用指针之前可以判断指针是否为NULL

我们可以把野指针想象成野狗,野狗放任不管是非常危险的,所以我们可以找一棵树把野狗拴起来,就相对安全了,给指针变量及时赋值为NULL,其实就类似把野狗栓前来,就是把野指针暂时管理起来。

不过野狗即使拴起来我们也要绕着走,不能去挑逗野狗,有点危险;对于指针也是,在使用之前,我们也要判断是否为NULL,看看是不是被拴起来起来的野狗,如果是不能直接使用,如果不是我们再去使用。

int main()
{
	int arr[10] = {1,2,3,4,5,67,7,8,9,10};
	int *p = &arr[0];
	for(i=0; i<10; i++)
	{
	*(p++) = i;
	}
//此时p已经越界了,可以把p置为NULL
	p = NULL;
//下次使用的时候,判断p不为NULL的时候再使用
//...
	p = &arr[0]; //重新让p获得地址
	if(p != NULL) //判断
	{
	//...
	}
	return 0;
}

6.2.4 避免返回局部变量的地址

如造成野指针的第3个例子,不要返回局部变量的地址。

7. assert断言

assert.h 头文件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如果不符合,就报错终止运行。这个宏常常被称为“断言”。

assert(p != NULL); 

上面代码在程序运行到这一行语句时,验证变量 p 是否等于 NULL 。如果确实不等于 NULL ,程序继续运行,否则就会终止运行,并且给出报错信息提示。

assert() 宏接受一个表达式作为参数。如果该表达式为真(返回值非零), assert() 不会产生
任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写入一条错误信息,显示没有通过的表达式,以及包含这个表达式的文件名和行号。

assert() 的使用对程序员是非常友好的,使用 assert() 有几个好处:它不仅能自动标识文件和出问题的行号,还有一种无需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问题,不需要再做断言,就在 #include <assert.h> 语句的前面,定义一个宏 NDEBUG

#define NDEBUG
#include <assert.h>

然后,重新编译程序,编译器就会禁用文件中所有的 assert() 语句。如果程序又出现问题,可以移除这条 #define NDBUG 指令(或者把它注释掉),再次编译,这样就重新启用了 assert() 语句。

assert() 的缺点是,因为引入了额外的检查,增加了程序的运行时间。

一般我们可以在 Debug 中使用,在 Release 版本中选择禁用 assert 就行,在 VS 这样的集成开发环境中,在 Release 版本中,直接就是优化掉了。这样在debug版本写有利于程序员排查问题,在 Release 版本不影响用户使用时程序的效率。

8. 指针的使用和传址调用

8.1 strlen的模拟实现

库函数strlen的功能是求字符串长度,统计的是字符串中 \0 之前的字符的个数。

函数原型如下:

size_t strlen ( const char * str ); 

参数str接收一个字符串的起始地址,然后开始统计字符串中 \0 之前的字符个数,最终返回长度。

如果要模拟实现只要从起始地址开始向后逐个字符的遍历,只要不是 \0 字符,计数器就+1,这样直到 \0 就停止。

参考代码如下:

int my_strlen(const char * str)
{
	int count = 0;
	assert(str);
	while(*str)
	{
	count++;
	str++;
	}
	return count;
}
int main()
{
	int len = my_strlen("abcdef");
	printf("%d\n", len);
	return 0;
}

8.2 传值调用和传址调用

学习指针的目的是使用指针解决问题,那什么问题,非指针不可呢?

例如:写一个函数,交换两个整型变量的值一番思考后,我们可能写出这样的代码:

#include <stdio.h>
void Swap1(int x, int y)
{
	int tmp = x;
	x = y;
	y = tmp;
}
int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	printf("交换前:a=%d b=%d\n", a, b);
	Swap1(a, b);
	printf("交换后:a=%d b=%d\n", a, b);
	return 0;
}

当我们运行代码,结果如下:

在这里插入图片描述
我们发现其实没产生交换的效果,这是为什么呢?

调试一下,试试呢?
在这里插入图片描述

我们发现在main函数内部,创建了aba的地址是0x00cffdd0,b的地址是0x00cffdc4,在调用Swap1函数时,将ab传递给了Swap1函数,在Swap1函数内部创建了形参xy接收ab的值,但是x的地址是0x00cffcecy的地址是0x00cffcf0xy确实接收到了ab的值,不过x的地址和a的地址不一样,y的地址和b的地址不一样,相当于xy是独立的空间,那么在Swap1函数内部交换xy的值,自然不会影响ab,当Swap1函数调用结束后回到main函数,ab的没法交换。Swap1函数在使用的时候,是把变量本身直接传递给了函数,这种调用函数的方式我们之前在函数的时候就知道了,这种叫传值调用。

结论:实参传递给形参的时候,形参会单独创建一份临时空间来接收实参,对形参的修改不影响实参。所以Swap是失败的了。那怎么办呢?

我们现在要解决的就是当调用Swap函数的时候,Swap函数内部操作的就是main函数中的ab,直接将ab的值交换了。那么就可以使用指针了,在main函数中将ab的地址传递给Swap函数,Swap函数里边通过地址间接的操作main函数中的ab,并达到交换的效果就好了。

#include <stdio.h> 
void Swap2(int*px, int*py)
{
	int tmp = 0;
	tmp = *px;
	*px = *py;
	*py = tmp;
}
int main()
{
	int a = 0;
	int b = 0;
	scanf("%d %d", &a, &b);
	printf("交换前:a=%d b=%d\n", a, b);
	Swap1(&a, &b);
	printf("交换后:a=%d b=%d\n", a, b);
	return 0;
}

首先看输出结果:

在这里插入图片描述

我们可以看到实现成Swap2的方式,顺利完成了任务,这里调用Swap2函数的时候是将变量的地址传递给了函数,这种函数调用方式叫:传址调用。

传址调用,可以让函数和主调函数之间建立真正的联系,在函数内部可以修改主调函数中的变量;所以未来函数中只是需要主调函数中的变量值来实现计算,就可以采用传值调用。如果函数内部要修改主调函数中的变量的值,就需要传址调用。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1203659.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Sprint Boot 学习路线 6

测试 Spring提供了一组测试工具&#xff0c;可以轻松地测试Spring应用程序的各个组件&#xff0c;包括控制器、服务、存储库和其他组件。它具有丰富的测试注释、实用程序类和其他功能&#xff0c;以帮助进行单元测试、集成测试等。 JPA测试 Spring JPA&#xff08;Java Pers…

开放领域对话系统架构

开放领域对话系统是指针对非特定领域或行业的对话系统&#xff0c;它可以与用户进行自由的对话&#xff0c;不受特定领域或行业的知识和规则的限制。开放领域对话系统需要具备更广泛的语言理解和生成能力&#xff0c;以便与用户进行自然、流畅的对话。 与垂直领域对话系统相比…

从单服务设计看SLA保证

文章首发公众号&#xff1a;海天二路搬砖工 0. 引言 在微服务架构中&#xff0c;谈到SLA保证&#xff0c;我们更多是从宏观的角度来需求解决方案。比如&#xff0c;通过合理服务拆分来增加系统整体的可维护性&#xff1b;通过多实例部署来保证系统的灾备。但是单个服务是可靠…

2023NewStarCTF

目录 一、阳光开朗大男孩 二、大怨种 三、2-分析 四、键盘侠 五、滴滴滴 六、Include? 七、medium_sql 八、POP Gadget 九、OtenkiGirl 一、阳光开朗大男孩 1.题目给出了secret.txt和flag.txt两个文件&#xff0c;secret.txt内容如下&#xff1a; 法治自由公正爱国…

【JVM】类加载器 Bootstrap、Extension、Application、User Define 以及 双亲委派

以下环境为 jdk1.8 两大类 分类成员语言继承关系引导类加载器bootstrap 引导类加载器C/C无自定义类加载器extension 拓展类加载器、application 系统/应用类加载器、user define 用户自定义类加载器Java继承于 java.lang.ClassLoader 四小类 Bootstrap 引导类加载器 负责加…

故障演练 | 微服务架构下如何做好故障演练

前言 微服务架构场景中&#xff0c;应用系统复杂切分散。长期运行时&#xff0c;局部出现故障时不可避免的。如果发生故障时不能进行有效反应&#xff0c;系统的可用性将极大地降低。 什么是故障演练 故障演练是指模拟生产环境中可能出现的故障&#xff0c;测试系统或应用在…

软考网络工程师知识点总结(二)

目录 21、海明码--差错控制 22、CRC循环冗余校验码 23、网络时延的计算 24、根据距离选择传输介质 25、多模光纤和单模光纤的区别 26、CSMA/CD协议 27、以太网帧结构 28、以太网类型及传输介质的选择 29、交换式以太网&#xff08;交换机&#xff09; 30、VLAN虚拟局…

Rust编程中的线程间通信

1.消息传递 为了实现消息传递并发&#xff0c;Rust 标准库提供了一个 信道&#xff08;channel&#xff09;实现。信道是一个通用编程概念&#xff0c;表示数据从一个线程发送到另一个线程。 可以将编程中的信道想象为一个水流的渠道&#xff0c;比如河流或小溪。如果你将诸如…

【C++ 学习 ㊱】- 智能指针详解

目录 一、为什么需要智能指针&#xff1f; 二、智能指针的原理及使用 三、auto_ptr 3.1 - 基本使用 3.2 - 模拟实现 四、unique_ptr 4.1 - 基本使用 4.2 - 模拟实现 五、shared_ptr 5.1 - 基本使用 5.2 - 模拟实现 六、weak_ptr 6.1 - shared_ptr 的循环引用问题 …

【Python小程序】求解2 * 2矩阵的逆矩阵

一、内容简介 使用Python求解2 * 2矩阵的逆矩阵。 二、求解方法 我们使用邻接矩阵法来求解2 * 2矩阵的逆矩阵。 det(A): 矩阵A的行列式 adj(A): 矩阵A的邻接矩阵 对于2*2矩阵A 我们有 三、Python代码 基于上述求解方法&#xff0c;我们可以写出Python代码如下&#xff…

行情分析——加密货币市场大盘走势(11.13)

大饼上涨太快&#xff0c;又开始震荡&#xff0c;但上不去&#xff0c;所以目前来看差不多要做回踩动作&#xff0c;入场空单性价比较高。而且从MACD日线来看&#xff0c;也是进入空头趋势&#xff0c;RSI&#xff08;14&#xff09;也是进入了超买区间&#xff0c;值得入手空单…

乡镇村污水处理智慧水务智能监管平台,助力污水监管智慧化、高效化

一、背景与需求 随着城市化进程的加速&#xff0c;排放的污水量也日益增加&#xff0c;导致水污染严重。深入打好污染防治攻坚战的重要抓手&#xff0c;对于改善城镇人居环境&#xff0c;推进城市治理体系和治理能力现代化&#xff0c;加快生态文明建设&#xff0c;推动高质量…

拼多多商品详情API接口接入流程如下:

拼多多商品详情API接口可以用于获取拼多多商品的具体信息&#xff0c;包括商品ID、商品名称、价格、销量、评价等。以下是使用拼多多商品详情API接口的步骤&#xff1a; 进入拼多多开放平台&#xff0c;注册并登录账号。在开放平台页面中&#xff0c;找到“商品详情”或“商品…

基于SSM+Vue的电子商城的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

基因检测技术的发展与创新:安全文件数据传输的重要作用

基因是生命的密码&#xff0c;它决定了我们的身体特征、健康状况、疾病风险等。随着基因检测技术的高速发展&#xff0c;我们可以通过对基因进行测序、分析和解读&#xff0c;更深入地认识自己&#xff0c;预防和治疗各种遗传性疾病&#xff0c;甚至实现个性化医疗和精准健康管…

动态调整学习率Lr

动态调整学习率Lr 0 引入1 代码例程1.1 工作方式解释 2 动态调整学习率的几种方法2.1 lr_scheduler.LambdaLR2.2 lr_scheduler.StepLR2.3 lr_scheduler.MultiStepLR2.4 lr_scheduler.ExponentialLR2.2.5 lr_scheduler.CosineAnnealingLR2.6 lr_scheduler.ReduceLROnPlateau2.7 …

ASK、PSK、FSK的调制与解调

ASK、PSK、FSK的调制与解调 本文主要涉及数字信号的调制与解调&#xff0c;内容包括&#xff1a;2ASK、2PSK、2FSK的调制与解调以及频谱分析 关于通信原理还有其他文章可参考&#xff1a; 1、信息量、码元、比特、码元速率、信息速率详细解析——实例分析 2、模拟系统的AM信号的…

2023最新版JavaSE教程——第6天:面向对象编程(基础)

目录 一、面向对象编程概述(了解)1.1 程序设计的思路1.2 由实际问题考虑如何设计程序1.3 如何掌握这种思想&#xff1f; 二、Java语言的基本元素&#xff1a;类和对象2.1 引入2.2 类和对象概述2.3 类的成员概述2.4 面向对象完成功能的三步骤(重要)2.4.1 步骤1&#xff1a;类的定…

数据分类分级方法及典型应用场景

1 2021-09-29 来源&#xff1a;数据学堂 [打印本稿][字号 大 中小] 《数据安全法》的第二十一条明确规定了由国家建立数据分类分级保护制度&#xff0c;根据数据在经济社会发展中的重要程度&#xff0c;以及一旦遭到篡改、破坏、泄露或者非法获取、非法利用&#xff0c;对国…

Flutter实践二:repository模式

1.repository 几乎所有的APP&#xff0c;从简单的到最复杂的&#xff0c;在它们的架构里几乎都包括状态管理和数据源这两部分。状态管理常见的有Bloc、Cubit、Provider、ViewModel等&#xff0c;数据源则是一些直接和数据库或者网络客户端进行交互&#xff0c;取得相应的数据&…