聊天机器人框架Rasa资源整理

news2025/1/15 17:16:23

  Rasa是一个主流的构建对话机器人的开源框架,它的优点是几乎覆盖了对话系统的所有功能,并且每个模块都有很好的可扩展性。参考文献收集了一些Rasa相关的开源项目和优质文章。

一.Rasa介绍

1.Rasa本地安装

直接Rasa本地安装一个不好的地方就是容易把本地计算机的Python包版本弄乱,建议使用Python虚拟环境进行安装:

pip3 install -U --user pip && pip3 install rasa

2.Rasa Docker Compose安装

查看本机Docker和Docker Compose版本:

docker-compose.yml文件如下所示:

version: '3.0'
services:
  rasa:
    image: rasa/rasa
    ports:
      - "5005:5005"
    volumes:
      - ./:/app
    command: ["run", "--enable-api", "--debug", "--cors", "*"]

3.Rasa命令介绍

用到的相关的Rasa命令如下所示:

rasa init:创建一个新的项目,包含示例训练数据,actions和配置文件。
rasa run:使用训练模型开启一个Rasa服务。
rasa shell:通过命令行的方式加载训练模型,然后同聊天机器人进行对话。
rasa train:使用NLU数据和stories训练模型,模型保存在./models中。
rasa interactive:开启一个交互式的学习会话,通过会话的方式,为Rasa模型创建一个新的训练数据。
telemetry:Configuration of Rasa Open Source telemetry reporting.
rasa test:使用测试NLU数据和stories来测试Rasa模型。
rasa visualize:可视化stories。
rasa data:训练数据的工具。
rasa export:通过一个event broker导出会话。
rasa evaluate:评估模型的工具。
-h, --help:帮助命令。
--version:查看Rasa版本信息。
rasa run actions:使用Rasa SDK开启action服务器。
rasa x:在本地启动Rasa X。

4.Rasa GitHub源码结构

Rasa的源码基本上都是用Python实现的:

二.Rasa项目基本流程

1.使用rasa init初始化一个项目

使用rasa init初始化聊天机器人项目:

.
├── actions
│   ├── __init__.py
│   └── actions.py
├── config.yml
├── credentials.yml
├── data
│   ├── nlu.yml
│   └── stories.yml
├── domain.yml
├── endpoints.yml
├── models
│   └── <timestamp>.tar.gz
└── tests
   └── test_stories.yml

2.准备自定义的NLU训练数据

nlu.yml部分数据如下:

version: "3.1"

nlu:
- intent: greet
  examples: |
    - hey
    - hello
    - hi
    - hello there
    - good morning
    - good evening
    - moin
    - hey there
    - let's go
    - hey dude
    - goodmorning
    - goodevening
    - good afternoon

上面的intent: greet表示意图为great,下面的是具体的简单例子。稍微复杂点的例子格式是:[实体值](实体类型名),比如[明天](日期)[上海](城市)的天气如何?其中的日期和城市就是NLP中实体识别中的实体了。除了intent必须外,该文件还可以包含同义词synonym、正则表达式regex和查找表lookup等。

3.配置NLU模型

最主要就是pipeline的配置了。相关的config.yml文件如下:

pipeline:
# # No configuration for the NLU pipeline was provided. The following default pipeline was used to train your model.
# # If you'd like to customize it, uncomment and adjust the pipeline.
# # See https://rasa.com/docs/rasa/tuning-your-model for more information.
#   - name: WhitespaceTokenizer
#   - name: RegexFeaturizer
#   - name: LexicalSyntacticFeaturizer
#   - name: CountVectorsFeaturizer
#   - name: CountVectorsFeaturizer
#     analyzer: char_wb
#     min_ngram: 1
#     max_ngram: 4
#   - name: DIETClassifier
#     epochs: 100
#     constrain_similarities: true
#   - name: EntitySynonymMapper
#   - name: ResponseSelector
#     epochs: 100
#     constrain_similarities: true
#   - name: FallbackClassifier
#     threshold: 0.3
#     ambiguity_threshold: 0.1

pipeline主要是分词组件、特征提取组件、NER组件和意图分类组件等,通过NLP模型进行实现,并且组件都是可插拔可替换的。

4.准备story数据

stories.yml文件如下:

version: "3.1"

stories:

- story: happy path
  steps:
  - intent: greet
  - action: utter_greet
  - intent: mood_great
  - action: utter_happy

- story: sad path 1
  steps:
  - intent: greet
  - action: utter_greet
  - intent: mood_unhappy
  - action: utter_cheer_up
  - action: utter_did_that_help
  - intent: affirm
  - action: utter_happy

- story: sad path 2
  steps:
  - intent: greet
  - action: utter_greet
  - intent: mood_unhappy
  - action: utter_cheer_up
  - action: utter_did_that_help
  - intent: deny
  - action: utter_goodbye

这里面可看做是用户和机器人一个完整的真实的对话流程,对话策略可通过机器学习或者深度学习的方式从其中进行学习。

5.定义domain

domain.yml文件如下:

version: "3.1"

intents:
  - greet
  - goodbye
  - affirm
  - deny
  - mood_great
  - mood_unhappy
  - bot_challenge

responses:
  utter_greet:
  - text: "Hey! How are you?"

  utter_cheer_up:
  - text: "Here is something to cheer you up:"
    image: "https://i.imgur.com/nGF1K8f.jpg"

  utter_did_that_help:
  - text: "Did that help you?"

  utter_happy:
  - text: "Great, carry on!"

  utter_goodbye:
  - text: "Bye"

  utter_iamabot:
  - text: "I am a bot, powered by Rasa."

session_config:
  session_expiration_time: 60 #单位是min,设置为0表示无失效期
  carry_over_slots_to_new_session: true #设置为false表示不继承历史词槽

领域(domain)中包含了聊天机器人的所有信息,包括意图(intent)、实体(entity)、词槽(slot)、动作(action)、表单(form)和回复(response)等。

6.配置Rasa Core模型

最主要就是policies的配置了。相关的config.yml文件如下:

# Configuration for Rasa Core.
# https://rasa.com/docs/rasa/core/policies/
policies:
# # No configuration for policies was provided. The following default policies were used to train your model.
# # If you'd like to customize them, uncomment and adjust the policies.
# # See https://rasa.com/docs/rasa/policies for more information.
#   - name: MemoizationPolicy
#   - name: RulePolicy
#   - name: UnexpecTEDIntentPolicy
#     max_history: 5
#     epochs: 100
#   - name: TEDPolicy
#     max_history: 5
#     epochs: 100
#     constrain_similarities: true

policies主要就是对话策略的配置,常用的包括TEDPolicy、UnexpecTEDIntentPolicy、MemoizationPolicy、AugmentedMemoizationPolicy、RulePolicy和Custom Policies等,并且策略之间也是有优先级顺序的。

7.使用rasa train训练模型

rasa train
或者
rasa train nlu
rasa train core

使用data目录中的数据作为训练数据,使用config.yml作为配置文件,并将训练后的模型保存到models目录中。

8.使用rasa test测试模型

通常把数据分为训练集和测试集,在训练集上训练模型,在测试集上测试模型:

rasa data split nlu
rasa test nlu -u test_set.md --model models/nlu-xxx.tar.gz

说明:当然也是可以通过交叉验证的方式来评估模型的。

9.让用户使用聊天机器人

可以通过shell用指定的模型进行交互:

rasa shell -m models/nlu-xxx.tar.gz

还可以通过rasa run --enable-api这种rest方式进行交互。如下:

三.Rasa系统架构

1.Rasa处理消息流程

  下图展示了从用户的Message输入到用户收到Message的基本流程:

  步骤1:用户输入的Message传递到Interpreter(NLP模块),然后识别Message中的意图(intent)和提取实体(entity)。
  步骤2:Rasa Core将Interpreter提取的intent和entity传递给Tracker,然后跟踪记录对话状态。
  步骤3:Tracker把当前状态和历史状态传递给Policy。
  步骤4:Policy根据当前状态和历史状态进行预测下一个Action。
  步骤5:Action完成预测结果,并将结果传递到Tracker,成为历史状态。
  步骤6:Action将预测结果返回给用户。

2.Rasa系统结构

  Rasa主要包括Rasa NLU(自然语言理解,即图中的NLU Pipeline)和Rasa Core(对话状态管理,即图中的Dialogue Policies)两个部分。Rasa NUL将用户的输入转换为意图和实体信息。Rasa Core基于当前和历史的对话记录,决策下一个Action。

  除了核心的自然语言理解(NLU)和对话状态管理(DSM)外,还有Agent代理系统,Action Server自定义后端服务系统,通过HTTP和Rasa Core通信;辅助系统Tracker Store、Lock Store和Event Broker等。还有上图没有显示的channel,它连接用户和对话机器人,支持多种主流的即时通信软件对接Rasa。
  (1)Agent组件:从用户角度来看,主要是接收用户输入消息,返回Rasa系统的回答。从Rasa角度来看,它连接自然语言理解(NLU)和对话状态管理(DSM),根据Action得到回答,并且保存对话数据到数据库。
  (2)Tracker Store:将用户和Rasa机器人的对话存储到Tracker Store中,Rasa提供的开箱即用的系统包括括PostgreSQL、SQLite、Oracle、Redis、MongoDB、DynamoDB,当然也可以自定义存储。
  (3)Lock Store:一个ID产生器,当Rasa集群部署的时候会用到,当消息处于活动状态时锁定会话,以此保证消息的顺序处理。
  (4)Event Broker:简单理解就是一个消息队列,把Rasa消息转发给其它服务来处理,包括RabbitMQ、Kafka等。
  (5)FileSystem:保存训练好的模型,可以放在本地磁盘、云服务器等位置。
  (6)Action Server:通过rasa-sdk可以实现Rasa的一个热插拔功能,比如查询天气预报等。

参考文献:
[1]Rasa 3.x官方文档:https://rasa.com/docs/rasa/
[2]Rasa Action Server:https://rasa.com/docs/action-server/
[3]Rasa Enterprise:https://rasa.com/docs/rasa-enterprise/
[4]Rasa Blog:https://rasa.com/blog/
[5]Rasa GitHub:https://github.com/rasahq/rasa
[6]Awesome-Chinese-NLP:https://github.com/crownpku/Awesome-Chinese-NLP
[7]BotSharp文档:https://botsharp.readthedocs.io/en/latest/
[8]BotSharp GitHub:https://github.com/SciSharp/BotSharp
[9]rasa-ui GitHub:https://github.com/paschmann/rasa-ui
[10]rasa-ui Gitee:https://gitee.com/jindao666/rasa-ui
[11]rasa_chatbot_cn:https://github.com/GaoQ1/rasa_chatbot_cn
[12]Rasa_NLU_Chi:https://github.com/crownpku/Rasa_NLU_Chi
[13]nlp-architect:https://github.com/IntelLabs/nlp-architect
[14]rasa-nlp-architect:https://github.com/GaoQ1/rasa-nlp-architect
[15]rasa_shopping_bot:https://github.com/whitespur/rasa_shopping_bot
[16]facebook/duckling:https://github.com/facebook/duckling
[17]rasa-voice-interface:https://github.com/RasaHQ/rasa-voice-interface
[18]Rasa:https://github.com/RasaHQ
[19]ymcui/Chinese-BERT-wwm:https://github.com/ymcui/Chinese-BERT-wwm
[20]Hybrid Chat:https://gitlab.expertflow.com/expertflow/hybrid-chat
[21]rasa-nlu-trainer:https://rasahq.github.io/rasa-nlu-trainer
[22]crownpku/Rasa_NLU_Chi:https://github.com/crownpku/rasa_nlu_chi
[23]jiangdongguo/ChitChatAssistant:https://github.com/jiangdongguo/ChitChatAssistant
[24]Rasa框架应用:https://www.zhihu.com/column/c_1318281710002663424
[25]Rasa开源引擎介绍:https://zhuanlan.zhihu.com/p/331806270
[26]Rasa聊天机器人专栏开篇:https://cloud.tencent.com/developer/article/1550247
[27]rasa-nlu的究极形态及rasa的一些难点:https://www.jianshu.com/p/553e37ffbac0
[28]Rasa官方文档手册:https://juejin.cn/post/6844903922042142734
[29]Rasa官方视频教程:https://www.bilibili.com/video/BV1xC4y1H7HG?p=1
[30]用Rasa NLU构建自己的中文NLU系统:http://www.crownpku.com/2017/07/27/用Rasa_NLU构建自己的中文NLU系统.html
[31]Rasa Core开发指南:https://blog.csdn.net/AndrExpert/article/details/92805022

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1197806.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Django框架FAQ

文章目录 问题1:Django数据库恢复问题2:null和blank的区别问题3:Django创建超级用户报错问题4:Django同源策略 问题1:Django数据库恢复 问题: 从仓库拉下来的Django项目,没有sqlite数据库和migrations记录,如何通过model恢复数据库 解决方法: # 步骤1:导出数据 # 不指定 ap…

如何配置《动手学强化学习》的环境

如何配置《动手学强化学习》的环境 网站&#xff1a;https://hrl.boyuai.com/chapter/intro github仓库&#xff1a;https://github.com/boyu-ai/Hands-on-RL/tree/main 可以看到该教程要求使用gym0.18.3版本的gym库&#xff0c;本教程可以用于解决绝大多数需要使用Pendulum-…

阿里云从公网IP转为弹性公网IP,同时绑定多个IP教程

先将云服务器ECS 转为弹性IP 购买新的弹性辅助网卡 购买弹性公网iP 购买之后选择绑定资源选择第二步购买的网卡 进入ECS 终端 ,输入 ip address可以查看到eth1 的对应mac 地址 终端输入 vi /etc/sysconfig/network-scripts/ifcfg-eth1保存一下信息 DEVICEeth1 #表示新配置…

【MySQL基本功系列】第二篇 InnoDB事务提交过程深度解析

通过上一篇博文&#xff0c;我们简要了解了MySQL的运行逻辑&#xff0c;从用户请求到最终将数据写入磁盘的整个过程。 当数据写入磁盘时&#xff0c;存储引擎扮演着关键的角色&#xff0c;它负责实际的数据存储和检索。 在MySQL中&#xff0c;有多个存储引擎可供选择&#xf…

免费博客搭建笔记

title: 免费博客搭建笔记 tags: 博客搭建 本次是对自己在网上学习github搭建一个 &#x1f447;个人免费静态网站的总结当然不是很完美&#x1f447; Bow to the new king iYANG (yangsongl1n.github.io) 接着我会从我的写笔记的个人习惯来逐步介绍如何搭建这个网站 1.写笔…

【解决】conda-script.py: error: argument COMMAND: invalid choice: ‘activate‘

运行conda activate base报错&#xff1a; 试了网上找到的解决方法都不行&#xff1a; 最后切换了一下terminal&#xff1a; 从powershell改回cmd&#xff08;不知道为什么一开始手贱换成powershell&#xff09; 就可以了

XML解析文档解析

1.首先是我的项目结构以及我所引入的依赖&#xff1a; 2.引入的依赖&#xff1a;jdk用的是17 <properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target> </properties> <dep…

黑客技术(网络安全)-自学

前言 一、什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防…

Peter算法小课堂—八皇后问题

独立集问题&#xff1a;安排互不冲突的个体 四个斜眼枪手 bool valid(int x,int y){for(int i1;i<min(x,y);i)if(f[x-i][y-i]) return 0;for(int i1;i<min(x,N-1-y);i)if(f[x-i][yi]) return 0;return 1; } void dfs(int x,int y,int c){if(cGUNS){ans;print();return;}i…

不可否认程序员的护城河已经越来越浅了

文章目录 那些在冲击程序员护城河低代码/无代码开发平台自动化测试和部署工具AI辅助开发工具在线学习和教育平台 面临冲击&#xff0c;程序员应该怎么做深入专业知识&#xff1a;不断学习全栈技能开发解决问题的能力建立人际网络管理和领导技能 推荐阅读 技术和应用的不断发展对…

skynet学习笔记03— 服务

01、API newservice(name, ...)&#xff1a; 阻塞的形势启动一个名为 name 的新服务&#xff0c;待start函数执行完后会返回这个服务的地址。uniqueservice(name, ...)&#xff1a;针对于当前节点&#xff0c;启动一个唯一服务&#xff08;相当于单例&#xff09;&#xff0c;…

土壤含水量的计算

土壤含水量的计算 土壤水分的表示方法 一般所说的土壤水分&#xff0c;实际上是指用烘干法在105-110摄氏度温度下能从土壤中被驱逐出来的水。土壤水分含量即土壤含水量&#xff0c;它是指土壤中所含有的水分的数量。土壤含水量可以用不同的方法表示&#xff0c;最常用的表示方…

【Git】Git分支与标签掌握这些技巧让你成为合格的码农

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Git》。&#x1f3af;&#x1f3af; &#x1f449…

src/main/resources/fonts/songti.ttc not found as file or resource.

https://blog.csdn.net/Lewishhhh/article/details/122812272文章浏览阅读4.8k次&#xff0c;点赞2次&#xff0c;收藏7次。背景遇到个需求需要用Java导出PDF文件&#xff0c;权衡之下选择了iText&#xff0c;Java操作pdf的各个开源库之间的对比可以参考https://blog.csdn.net/…

论文笔记:AttnMove: History Enhanced Trajectory Recovery via AttentionalNetwork

AAAI 2021 1 intro 1.1 背景 将用户稀疏的轨迹数据恢复至细粒度的轨迹数据是十分重要的恢复稀疏轨迹数据至细粒度轨迹数据是非常困难的 已观察到的用户位置数据十分稀疏&#xff0c;使得未观察到的用户位置存在较多的不确定性真实数据中存在大量噪声&#xff0c;如何有效的挖…

大数据毕业设计选题推荐-生产大数据平台-Hadoop-Spark-Hive

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

Centos7安装PostgreSQL 14

环境&#xff1a; Centos7安装PostgreSQL_14版本数据库&#xff1b; 打开官方网站&#xff1a;PostgreSQL: Linux downloads (Red Hat family) 一、 版本选择 复制、粘贴并运行如下脚本&#xff1a; 二、安装步骤 这些命令是在 CentOS 7.x 系统上安装和配置 PostgreSQL 14 的步…

【机器学习范式】监督学习,无监督学习,强化学习, 半监督学习,自监督学习,迁移学习,对比分析+详解与示例代码

目录 1. 监督学习 (Supervised Learning): 2. 无监督学习 (Unsupervised Learning): 3. 强化学习 (Reinforcement Learning): 4. 半监督学习 (Semi-Supervised Learning): 5. 自监督学习 (Self-Supervised Learning): 6. 迁移学习 (Transfer Learning): 7 机器学习范式应…

Java编程--synchronized/死锁/可重入锁/内存可见性问题/wait()、notify()

前言 逆水行舟&#xff0c;不进则退&#xff01;&#xff01;&#xff01; 目录 线程安全 synchronized原子锁 可重入锁&#xff08;递归锁&#xff09; 死锁 内存可见性问题 wait()、notify() 线程安全 线程安全是指在多线程环境下&#xff0c;程序的行为表现仍然符合我…