AI 绘画 | Stable Diffusion 进阶 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)

news2025/1/16 13:54:36

前言

Stable Diffusion web ui,除了依靠文生图(即靠提示词生成图片),图生图(即靠图片+提示词生成图片)外,这两种方式还不能满足我们所有的绘图需求,于是就有了 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)。

  • Embeddings模型 模型非常小,常常用于放在反向提示词里,让图像不出现生么,当然也可与用于正向提示词,生成我们想要的
  • LoRa模型 模型几十到几百MB,更多用于画特定人物,比如游戏/动漫的人物。平台上lora模型比较多。
  • Hypernetwork模型 大小和作用都和LoRa模型差不多,平台上Hypernetwork模型比较少。

在这里插入图片描述
你只需要在提示词词,使用Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)的标签。

Embeddings(词嵌入)

概念

Embeddings中文翻译为嵌入的,在Stable Diffusion中被称为词嵌入(嵌入式向量),这些向量可以捕捉文本中的语义信息,并在其中映射特定风格特征的信息。Embeddings一般保存的信息量相对较小,对人物的还原、对动作的指定、对画风的指定效果一般。除此之外,它还有另外一个名字Textual Inversion(文本反置、文本倒置)。它的模型被成为嵌入式模型、(反置/倒置)模型 。
Embeddings在Stable Diffusion模型中,又被称作嵌入式向量。它可以将文本编码器(TextEncoder)的输入(例如提示词)转换成电脑可以识别的文本向量,并在其中映射特定风格特征的信息。Embeddings模型和VAE模型一样后缀格式是.pt。大小仅为几kb到几十kb之间。Embeddings和checkpoint模型和lora模型比,它内部不包含图片信息,只是一些电脑可以识别图片的文本向量。举个比喻,如果把checkpoint模型比作一本大词典的话,Embeddings就是这本大词典中一些特定词的标签,它能精准的指向个别字词的含义,从而提共一个高效的索引。
比如我们像要画一个明星,但是checkpoint模型没有该明星名字对应的图片信息,这是我就可以用该明星的Embeddings模型生成这个明星的图片了,这里你可以Embeddings模型理解为包含这个明星的五官,面部、身体特征的嵌入式向量。使用Embeddings,Stable Diffusion就更容易理解我们画的明星长什么样子了!

使用

我们在模型下载网站上下载我们想要的Embeddings模型(国内liblib网站)。
在这里插入图片描述
然后放到SD WEB UI根目录下的embeddings文件夹内。,然后在SD WEB UI页面,点击刷新按钮,加载出来我们下载的Embeddings模型,然后点击Embeddings模型,会自动出现在提示词输入框。(默认会在正向提示词输入框内,但是当鼠标光标在反向提示词框内时,会出现在反向提示词框。)
在这里插入图片描述
这里的Embeddings模型也可以用提示词语法,圆括号和冒号来调整权重系数。
在这里插入图片描述

LoRa(低秩适应模型)

概念

Stable Diffusion Lora模型是一种通过低秩适应大型语言模型的方法。其核心思想是将原始的大型参数矩阵分解成两个或者多个低秩矩阵,并且只更新其中的一部分,从而减少计算量和存储需求,提高训练效率和模型性能。Lora的作用在于帮助你向AI传递描述某一个特征明确,主体清晰的形象。

使用

我们在模型下载网站(liblib.ai)上下载我们想要的lora模型。Lora模型需要放在 SD WEB UI根目录下的models\Lora文件夹内,大小一般为几十MB到几百MB。然后和嵌入式模型操作一样,先刷新在网页上加载出lora模型,然后点击lora到提示词输入框。
在这里插入图片描述
这里和嵌入式模型用法不同的是,lora模型需要加<>括号。格式 <lora:模型名:权重>,权重为1的时候,可以不写 <lora:模型名>,lora的权重建议设置在0.6左右,因为lora的权重越高,其他提示词的作用就越小,lora的权重过低,生成的图片又不像lora的训练的人物模样。当然lora的权重的最佳值,还跟你选择checkpoint模型有关,相同的lora搭配不同的checkpoint模型,生图的效果也有很大差别。经过我自己的大量测试,lora的权重建议设置在0.6左右,搭配大多数checkpoint模型都会有不错的效果。

在这里插入图片描述
值得注意的是有些lora模型需要搭配触发提示词,才能发挥lora的效果。

Hypernetwork(超网络)

概念

Stable Diffusion Hypernetwork是一种神经网络架构,它允许动态生成神经网络的参数(权重)。在Stable Diffusion中,Hypernetwork被用于动态生成分类器的参数,为Stable Diffusion模型添加了随机性,减少了参数量,并能够引入side information来辅助特定任务,这使得该模型具有更强的通用性和概括能力。

Hypernetwork的重要功能之一是对画面风格的转换,即切换不同的画风。它的特点在于能够生成多种画风的作品,同时能够保证画面的稳定性和清晰度。

使用

我们在模型下载网站(liblib.ai)上下载我们想要的lora模型。Hypernetwork模型需要放在 SD WEB UI根目录下的models\hypernetworks文件夹内,大小和lora模型差不多,一般为几十MB到几百MB。
在这里插入图片描述

hypernetworks模型的使用方法和lora模型一样,不同的是<lora:模型名>替换成了<hypernet:模型名>。格式 <hypernet:模型名:权重>
在这里插入图片描述
可以看出除了Embeddings模型的使用不需要<>尖括号外,hypernetworks模型和lora模型的使用都需要<>尖括号,说明hypernetworks模型和lora模型都是类似的,都是需要图片训练的,模型的中包含大量图片信息,而Embeddings模型只是简单的文本标记(向量)。

LoRA和Hypernetwork的区别

  • LoRA和Hypernetwork都是机器学习领域中比较前沿的技术,但是它们的作用有所不同。LoRA是一种图像风格转换模型,它可以将一张图片从一种风格转换成另一种风格,实现艺术风格迁移等功能。而Hypernetwork是一种模型生成技术,它的作用是学习从一个低维空间的潜在表示到一个高维空间的输出的映射函数。这种方法的主要目的是提供更加一般性和灵活性的模型生成能力,从而可以用更少的参数生成效果更好的模型。两种方法都有各自的优点和限制,需要根据具体任务的需求来选择相应的方法。

  • LoRA模型被广泛应用在图像处理领域,有很多应用场景,比如图像风格转换、艺术化渲染等等。同时,LoRA模型模型能够使用预训练权重,因此在实际应用中获取高质量的样本比较容易,并且由于LoRA的模型架构相对简单,因此训练比较容易实现。因此,很多人在图像处理领域中应用LoRA模型来处理图像,使得网上关于LoRA模型的文章和论文比较多。

  • 而Hypernetwork模型则相对较新,目前应用还较为局限。它的一个重要应用方向是用于神经网络架构搜索,可以快速搜索到高效的网络结构。但是,这种方法的难度比较大,需要大量的计算资源和专业知识以及较长的时间进行调试和优化。因此,Hypernetwork模型的文章和论文相对比较少,目前还没有被大规模应用到实际的项目中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1197551.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Echarts柱状体实现滚动条动态滚动

当我们柱状图中X轴数据太多的时候&#xff0c;会自动把柱形的宽度挤的很细&#xff0c;带来的交互非常不好&#xff0c;因此就有一个属性来解决&#xff1a;dataZoom 我这里只是实现了一个简易的版本&#xff0c;横向滚动。 dataZoom: {show: true, // 为true 滚动条出现realti…

自主开发刷题应用网站H5源码(无需后端无需数据库)

该应用使用JSON作为题库的存储方式&#xff0c;层次清晰、结构简单易懂。 配套的word模板和模板到JSON转换工具可供使用&#xff0c;方便将题库从word格式转换为JSON格式。 四种刷题模式包括顺序刷题、乱序刷题、错题模式和背题模式&#xff0c;可以根据自己的需求选择适合的模…

Activiti6工作流引擎:Form表单

表单约等于流程变量。StartEvent 有一个Form属性&#xff0c;用于关联流程中涉及到的业务数据。 一&#xff1a;内置表单 每个节点都可以有不同的表单属性。 1.1 获取开始节点对应的表单 Autowired private FormService formService;Test void delopyProcess() {ProcessEngi…

stm32超声波测距不准的解决方法(STM32 delay_us()产生1us)

首先要说明一下原理&#xff1a;使用stm32无法准确产生1us的时间&#xff0c;但是超声波测距一定要依赖时间&#xff0c;时间不准&#xff0c;距离一定不准&#xff0c;这是要肯定的&#xff0c;但是在不准确的情况下&#xff0c;要测量一个比较准确的时间&#xff0c;那么只能…

RK3568平台 查看内存的基本命令

一.free命令 free命令显示系统使用和空闲的内存情况&#xff0c;包括物理内存、交互区内存(swap)和内核缓冲区内存。共享内存将被忽略。 Mem 行(第二行)是内存的使用情况。 Swap 行(第三行)是交换空间的使用情况。 total 列显示系统总的可用物理内存和交换空间大小。 used 列显…

学习c#的第四天

目录 C# 变量 C# 中的变量定义与初始化 接受来自用户的值 C# 中的 Lvalues 和 Rvalues 不同类型变量进行运算 静态变量 局部变量 C# 常量 整数常量 浮点常量 字符常量 字符串常量 定义常量 扩展知识 Convert.ToDouble 与 Double.Parse 的区别 静态常量和动态常…

SpringBoot_01

Spring https://spring.io/ SpringBoot可以帮助我们非常快速的构建应用程序、简化开发、提高效率。 SpringBootWeb入门 需求&#xff1a;使用SpringBoot开发一个web应用&#xff0c;浏览器发起请求/hello后&#xff0c;给浏览器返回字符串"Hello World~~~"。 步骤…

数据结构:树的基本概念(二叉树,定义性质,存储结构)

目录 1.树1.基本概念1.空树2.非空树 2.基本术语1.结点之间的关系描述2.结点、树的属性描述3.有序树、无序树4.森林 3.树的常考性质 2.二叉树1.基本概念2.特殊二叉树1.满二叉树2.完全二叉树3.二叉排序树4.平衡二叉树 3.常考性质4.二叉树的存储结构1.顺序存储2.链式存储 1.树 1.…

MYSQL5.7和MYSQL8配置主从

1、创建专门主从的账号 #登录 mysql -u root -p #创建用户 我这里用户名为test5&#xff0c;注意这里的ip是从库服务器的ip CREATE USER test5192.168.1.20 IDENTIFIED WITH mysql_native_password BY xxxxx; #给主从复制账号授权 grant replication slave on *.* to test5192…

Java程序设计2023-第八次上机练习

8-1简单文本编辑器 编写简单文本编辑器&#xff0c;该程序可以新建、打开、编辑和保存文本文件。当用户点击New时&#xff0c;新建一个文件&#xff0c;用户可以编辑文件内容&#xff0c;然后点击Save保存文件。用户点击Open时&#xff0c;选择一个已有文件&#xff0c;然后可…

SDWAN(Software Defined Wide Area Network)概述与优势分析

文章目录 SDWAN简介SDWAN技术优势简化网络部署和维护安全传输灵活网络拓扑极致体验 SD-WAN关联技术STUNIPsec智能选路SaaS路径优化 典型组网多总部分支组网云管理组网 推荐阅读 SDWAN简介 SDWAN&#xff08;Software Defined Wide Area Network&#xff0c;软件定义广域网&…

Revit 平面的圆弧,空间的椭圆弧

大家对Revit的空间曲线那么理解,如何用代码创建空间的椭圆弧,,上看是圆弧,正面看是椭圆? 直接放代码: Document doc = commandData.Application.ActiveUIDocument.Document; Autodesk.Revit.DB.XYZ center = new Autodesk.Revit.DB.XYZ(0, 0, 0); …

Vue3 源码解读系列(三)——组件渲染

组件渲染 vnode 本质是用来描述 DOM 的 JavaScript 对象&#xff0c;它在 Vue 中可以描述不同类型的节点&#xff0c;比如&#xff1a;普通元素节点、组件节点等。 vnode 的优点&#xff1a; 抽象&#xff1a;引入 vnode&#xff0c;可以把渲染过程抽象化&#xff0c;从而使得组…

漏刻有时百度地图API实战开发(4)显示指定区域在移动端异常的解决方案

漏刻有时百度地图API实战开发(1)华为手机无法使用addEventListener click 的兼容解决方案漏刻有时百度地图API实战开发(2)文本标签显示和隐藏的切换开关漏刻有时百度地图API实战开发(3)自动获取地图多边形中心点坐标漏刻有时百度地图API实战开发(4)显示指定区域在移动端异常的解…

Linux文件系统——重定向

文章目录 1. 文件描述符分配规则2. 重定向接口dup2自定义shell重定向(补充) 3. 标准输出和标准错误4. 如何理解一切接文件 本章代码gitee地址&#xff1a;文件重定向 1. 文件描述符分配规则 文件描述符的分配规则是从0下标开始&#xff0c;寻址最小的没有使用的数组位置&#…

飞机社交软件开发:重新定义社交媒体的空中交互体验

【导语】 随着互联网技术的快速发展&#xff0c;社交媒体平台的界限也逐渐模糊。飞机社交软件应运而生&#xff0c;打破传统的地面社交模式&#xff0c;为空中旅行的旅客提供全新的交流平台。本文将从市场需求、技术实现、用户体验和未来发展等方面&#xff0c;深入探讨飞机社交…

探索内存函数的奥秘【memcpy、memmove、memset、memcmp】

目录 一&#xff0c;memcpy函数 1&#xff0c;memcpy函数简介 2&#xff0c;memcpy函数的原理 3&#xff0c;memcpy函数的用法 4&#xff0c;注意事项 5&#xff0c;memcpy函数模拟实现 二&#xff0c;memmove函数 1&#xff0c;memmove函数简介 2&#xff0c;memmove函…

文件夹批量改名技巧:简单步骤,实现文件夹随机重命名

在日常生活和工作中&#xff0c;经常需要处理大量的文件夹&#xff0c;需要对其进行有效的管理。在这些情况下&#xff0c;文件夹的命名就变得非常重要。一个好的命名策略可以快速找到所需的文件夹&#xff0c;也可以帮助更好地组织文件。然而&#xff0c;手动为每个文件夹重命…

Ocelot:.NET开源API网关提供路由管理、服务发现、鉴权限流等功能

随着微服务的兴起&#xff0c;API网关越来越常见。API网关是连接应用程序和用户之间的桥梁&#xff0c;就像一个交通指挥员&#xff0c;负责处理所有进出应用的数据和请求&#xff0c;确保安全、高效、有序地流通。 今天给大家推荐一个.NET开源API网关。 01 项目简介 Ocelot…

通过easyexcel导出数据到表格

这篇文章简单介绍一下怎么通过easyexcel做数据的导出&#xff0c;使用之前easyui构建的歌曲列表crud应用&#xff0c;添加一个导出按钮&#xff0c;点击的时候直接连接后端接口地址&#xff0c;在后端的接口完成数据的导出功能。 前端页面完整代码 let editingId; let request…