全新Inner-IoU损失函数!!!通过辅助边界框计算IoU有效提升检测效果

news2024/11/23 20:14:36

摘要

1 简介

2 方法

2.1 边界框回归模式分析

2.2  Inner-IoU 损失

3 实验

3.1  模拟实验

3.2 对比实验

3.2.1 PASCAL VOC上的YOLOv7

3.2.2 YOLOv5 在 AI-TOD 上

4. 参考


摘要

随着检测器的快速发展,边界框回归(BBR)损失函数不断进行更新和优化。然而,现有的 IoU 基于 BBR 仍然集中在通过添加新损失项来加速收敛,忽略了 IoU 损失项本身的局限性。尽管从理论上讲,IoU 损失可以有效地描述边界框回归的状态,但在实际应用中,它无法根据不同的检测器和检测任务进行自适应调整,且不具备较强的泛化能力。

基于上述情况,作者首先分析了 BBR 模型,并得出结论:区分不同的回归样本以及使用不同尺度的辅助边界框计算损失可以有效加速边界框回归过程。对于高 IoU 样本,使用较小的辅助边界框计算损失可以加速收敛,而较大的辅助边界框适合于低 IoU 样本。然后,作者提出了 Inner-IoU 损失,通过辅助边界框计算 IoU 损失。对于不同的数据集和检测器,作者引入一个缩放因子比来控制计算损失的辅助边界框的尺度大小。最后,将 Inner-IoU 集成到现有的 IoU 基于损失函数中进行仿真和比较实验。

实验结果表明,利用本文提出的方法进一步提高了检测性能,验证了 Inner IoU 损失的有效性和泛化能力。

1 简介

目标检测是计算机视觉中的基本任务,包括目标分类和定位。边界框回归损失函数是检测器定位分支的重要组成部分,检测器的定位精度在很大程度上取决于边界框回归,在当前的检测器中发挥着不可替代的作用。

在BBR中,IoU损失可以准确描述预测边界框与GT框之间匹配的程度,确保模型在训练过程中可以学习到目标的位置信息。作为现有主流边界框回归损失函数的基本部分,IoU定义如下:

B和B^{gt}分别代表预测框和GT框。定义IoU之后,相应的损失可以定义如下:

至今,基于IoU的损失函数逐渐成为主流并占据主导地位。大多数现有方法基于IoU并进一步添加新的损失项。例如,为了在Anchor框与GT框重叠区域为0时解决梯度消失问题,提出了GIoU。GIoU定义如下,其中C是覆盖B和 的最小框:

与GIoU相比,DIoU函数在IoU的基础上添加了一个新的距离损失项,主要通过最小化两个边界框中心点之间的归一化距离来达到更快收敛和更好的性能。它表示如下:

其中b和\rho分别是B和B^{gt}的中心点,指的是欧氏距离,c是最小边界框的diagonal。

CIoU进一步考虑了形状损失,并在DIoU损失的基础上添加了形状损失项。它表示如下:

其中,\alpha是正交平衡参数:

其中,\upsilon衡量aspect ratio的一致性:

\omega ^{gt}h^{gt}分别表示目标框的宽度和高度,w和h分别表示预测框的宽度和高度。当目标框和预测框的 aspect ratio 相同时,CIoU将退化为DIoU。

与DIoU相比,EIoU直接最小化目标框和Anchor框的宽度和高度以及中心位置的归一化差值。EIoU定义如下:

w^{c}h^{c}分别是覆盖目标框和预测框的最小边界框的宽度和高度。

最近的SIoU在考虑了Anchor框与GT框之间角度对边界框回归影响的基础上,将角度损失引入边界框回归损失函数。它定义如下:

角度损失表示GT框和Anchor框中心点连接之间的最小角度:

这一项旨在将Anchor框移动到最近的坐标轴,并根据角度变化优先考虑接近X轴或Y轴。当角度值为45°时,Λ=1。当中心点沿X轴或Y轴对齐时,Λ=0。

在考虑角度成本后,重新定义距离损失如下:

形状损失主要描述GT框和Anchor框之间的大小差异,定义如下:

θ的值决定了形状成本的重要性。这个参数的范围从2到6。

尽管上述边界框回归损失函数可以通过向IoU损失函数添加新的几何约束来加速收敛和改进检测性能,但它们并没有考虑IoU损失本身的合理性,这决定了检测结果的质量。为了弥补这一不足,作者提出了Inner-IoU损失,通过使用辅助边界框来加速回归,而无需添加任何新的损失项。

本文的主要贡献如下:

  • 作者分析了边界框回归的过程和模式,并根据边界框回归问题的固有特性,提出在模型训练过程中使用较小的辅助边界框计算损失,以对高IoU样本的回归产生正向效果,而低IoU样本产生相反效果。

  • 作者提出了Inner-IoU损失,通过引入比例因子控制来生成不同尺度的辅助边界框以计算损失。将其应用于现有的IoU基于损失函数可以实现更快和更有效的回归结果。

  • 作者进行了一系列仿真和比较实验,实验结果表明,作者的方法在检测性能和泛化方面优于现有方法,对于不同像素大小的数据集,它实现了SOTA。

2 方法

2.1 边界框回归模式分析

IoU损失函数在计算机视觉任务中有广泛的应用。在边界框回归过程中,不仅可以评估回归状态,还可以通过计算回归损失来加速收敛。在这里,作者讨论IoU变化与边界框大小之间的关系,分析边界框回归问题的本质特征,并解释本文提出方法的可行性。

如图3所示,图3a显示了IoU偏差曲线,水平轴和垂直轴分别表示偏差和IoU值。三种不同颜色的曲线对应不同尺度边界框的IoU变化曲线。A、B、C、D 和 E 分别表示Anchor框和GT框的 5 种不同位置关系,其中红色边界框表示长度和宽度为10的Anchor框,对应的GT框用黑色边界框表示。

图3b显示了ABS(Grad)偏差曲线。与图3a不同,图3b的垂直轴表示IoU偏差的绝对值。作者假设实际边界框大小为10,使用大小为8和12的边界框作为辅助边界框。在图3中,A和E对应低IoU样本的回归状态,而B和D对应高IoU样本的回归状态。从图3可以得出以下结论:

  • 由于辅助边界框与实际边界框之间的尺度差异,回归过程中IoU值的变化趋势与实际边界框IoU值的变化趋势一致,可以反映实际边界框回归结果的质量。
  • 对于高IoU样本,较小尺度辅助边界框的IoU偏差的绝对值大于实际边界框IoU偏差的绝对值
  • 对于低IoU样本,较大尺度辅助边界框的IoU偏差的绝对值大于实际边界框 IoU偏差的绝对值。

基于以上分析,使用较小尺度辅助边界框计算IoU损失有助于提高高IoU样本的回归速度并加速收敛。相反,使用较大尺度辅助边界框计算IoU损失可以加速低IoU样本的回归过程。

2.2  Inner-IoU 损失

为弥补现有IoU损失函数在不同的检测任务中的泛化能力较弱且收敛速度较慢的不足,作者提出使用辅助边界框计算损失以加速边界框回归过程。在Inner-IoU中,作者引入了尺度因子比,可以控制辅助边界框的尺度大小。通过为不同数据集和检测器使用不同尺度的辅助边界框,可以克服现有方法在泛化能力方面的局限。

GT框和Anchor框分别表示为B^{gt}和 B,如图1所示。GT 框的中心点和内 GT 框的中心点用(x_{c}^{g^{t}},y_{c}^{g^{t}})表示,而(x_{c},y_{c})表示Anchor框和内Anchor框的中心点。GT 框的宽度和高度分别用\omega ^{gt}h^{gt}表示,而Anchor框的宽度和高度用w和h表示。变量“ratio”对应缩放因子,通常在 [0.5, 1.5] 的范围内。

Inner-IoU损失继承了IoU损失的一些特征,同时具有自己的特点。Inner-IoU损失的范围与IoU损失相同,为[0,1]。由于辅助边界框与实际边界框之间仅存在尺度差异,损失函数的计算方法相同,Inner-IoU偏差曲线与 IoU 偏差曲线相似。

与 IoU 损失相比,当比例小于 1 且辅助边界框尺寸小于实际边界框时,回归的有效范围小于IoU损失,但梯度的绝对值大于从IoU损失获得的梯度,可以加速高IoU样本的收敛。相反,当比例大于1时,较大尺度的辅助边界框扩展了回归的有效范围,对低IoU样本的回归具有增强效果。

将Inner-IoU损失应用于现有的基于IoU的边界框回归损失函数,如L_{Inner-IoU}L_{Inner-GIoU}L_{Inner-DIoU}L_{Inner-CIoU}L_{Inner-EIoU}L_{Inner-SIoU},如下所示:

3 实验

3.1  模拟实验

如图5所示,本文通过模拟实验分析了两种不同场景下的边界框回归过程。在图5a和图5b中,设置了7个不同的绿色边界框作为目标框,目标框的中心点设置为(100,100),比例分别为1:4、1:3、1:2、1:1、2:1、3:1和4:1。在图5a中,Anchor框随机分配2000个点,其位置分布以(100,100)为中心,半径为3。对于每个点的尺度,Anchor框的面积设置为 0.5、0.67、0.75、1、1.33、1.5 和 2。

对于给定的点和尺度,适应7个aspect ratios,即遵循与目标框相同的目标设置(即 1:4、1:3、1:2、1:1、2:1、3:1 和 4:1)。图 5b 的Anchor框分布不同于图5a,其位置分布以(100,100)为中心,半径为6至9。尺寸和比例与图5a相同。总之,在每个实验中,应将2,000 × 7 × 7个Anchor框拟合到每个目标框。

因此,总共有686,000=7 × 7 × 7 × 2,000种压缩情况。模拟实验的结果如图7所示,其中图7a表示高IoU回归样本场景下的收敛结果。为了加速高IoU样本的回归,尺度因子比例设置为0.8。图7b表示低IoU回归样本场景下的收敛结果,比例设置为1.2。可以看出,图中表示作者方法的虚线收敛速度优于现有方法。

3.2 对比实验

3.2.1 PASCAL VOC上的YOLOv7

本实验对比了CIoU方法和SIoU方法,使用YOLOV7-tiny作为检测器,VOC2007 trainval和VOC2012 trainval作为训练集,VOC2007 test作为测试集。训练集包含16551张图像,而测试集包含4952张具有20个类别的图像。作者在训练集上训练了150个Epoch,以展示作者方法的优势。

作者可视化了所提出方法与原始方法的训练过程,如图8所示。图 8a、图 8b 和图 8c 分别显示了CIoU和Inner-CIoU的训练过程曲线,相应比例分别为0.7、0.75和0.8。图8d、图8e 和图8f 分别为SIoU和Inner-SIoU在比例为0.7、0.75和0.8时的训练过程曲线。

在图8中,橙色曲线代表本篇论文提出的方法,而现有方法用绿色曲线表示。可以看出,在50到150个Epoch的训练过程中,本文提出的方法优于现有方法。

对比实验在测试集上的结果如表1所示。可以看出,应用本文方法后,检测效果得到了提高,AP50和 mAP50:95均提高了0.5%以上。

图2和图6展示了检测样本的比较。从图中可以看出,与现有方法相比,所提出的方法定位更准确,假检测和漏检测较少。

3.2.2 YOLOv5 在 AI-TOD 上

为了证明所提出方法的可泛化性,作者在AI-TOD数据集上进行了比较实验,使用SIoU作为比较方法。

AI-TOD包括28036张空中图像,8种目标类型,以及700621个目标实例,其中14018张图像作为训练集,其余14018张图像作为测试集。与现有的目标检测任务数据集相比,AITOD 的平均大小为12.8像素,远小于其他数据集。实验结果如表 II 所示。

在对比实验 1 中,通过将比例值在 0.7 和 0.8 之间设置为小于 1,生成了一个比实际边界框小的辅助边界。实验结果表明,它可以提高高 IoU 样本的收益。在实验 2 中,当比例值大于 1 时,通过生成更大的辅助边界框来加速低 IoU 样本的收敛。

此外,图 4 展示了测试集上的检测结果比较,通过比较可以看出所提出方法的优势。

4. 参考

[1]. Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1195103.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【赠书第3期】用ChatGPT轻松玩转机器学习与深度学习

文章目录 前言 1 机器学习 2 深度学习 3 使用ChatGPT进行机器学习和深度学习 4 推荐图书 5 粉丝福利 前言 机器学习和深度学习是当前最热门的技术领域之一,这些技术正在不断地改变我们的生活和工作方式。ChatGPT 是一款基于大规模预训练模型的自然语言处理工…

C4D vs Blender:哪个更适合你的需求?

对于初学者来说,选择合适的 3D 制作软件往往是一件很困扰的事情。近年来,C4D 和 Blender 成为了许多动画和 3D 建模爱好者的热门选择。那么,这两款软件各有什么特色呢?让我们一起来看看吧! 一、软件特色 C4D 是一款商…

GEE ——errors & debuggings (2023GEE峰会总结)

简介: 在gee中有三种错误,一种就是系统错误,也就是我们看到的会在JavaScript code editor中出现的错误,也就是在程序还没有启动之前就会提示的错误,而客户端错误则主要是会提示一些在代码过程中的错误,比如…

Java语言基础(上)

Java 语言的特点 面对对象:Java 中所有的数据和方法都封装在对象中跨平台性:Java 通过 Java 虚拟机,可以在不同的操作系统上运行相同的程序自动内存管理:Java 提供垃圾回收机制,不需要手动管理内存强类型语言&#xf…

ElasticSearch7.x - HTTP 操作 - 索引操作

创建索引 对比关系型数据库,创建索引就等同于创建数据库 在 Postman 中,向 ES 服务器发 PUT 请求 :http://192.168.254.101:9200/shopping 说明 {"acknowledged"【响应结果】: true, # true 操作成功"shards_acknowledged"【分片结果】: true, # 分片操…

亚数受邀参加“长三角G60科创走廊量子密码应用创新联盟(中心)”启动仪式

11月8日,在第六届中国国际进口博览会2023长三角G60科创走廊高质量发展要素对接大会上,亚数信息科技(上海)有限公司CEO翟新元作为密码企业代表之一受邀参加“长三角G60科创走廊量子密码应用创新联盟(中心)”…

【手动创建UIWindow Objective-C语言】

一、上节课,我们讲了控制器View的懒加载: 1.什么时候会调用这个懒加载呢,用我们直接,控制器self.view self.view的时候: 什么时候,调用它这个self.view, 就要去加载控制器的view, self.view 加载控制器的view 我们给大家演示过了,这个大家已经清楚了,我们给大家说…

2023年A股借壳上市研究报告

第一章 借壳上市概况 1.1 定义 借壳上市作为一种独特的资本市场操作手法,历来是企业拓展融资渠道和实现市场战略目标的重要途径。具体来说,借壳上市可分为狭义与广义两种模式。在狭义的定义下,借壳上市是指一家已上市的公司的控股母公司&am…

vivo 数据库降本实践:探索成本效益最优的数据库解决方案

vivo 自 2022 年开始调研、测试 OceanBase 至今,现已上线 17 个业务系统,涵盖日志类、分析类、交易类业务,实现了总资源节省 80%,开发、运维工作大幅简化。vivo 体系与流程 IT 部门数据库高级工程师廖光明在本文中,详细…

利用MSF设置代理

1、介绍: 通过MSF拿到一个机器的权限后,通过MSF搭建socks代理,然后通内网。 拿到目标权限,有很多方法,比如:①ms17-010 ②补丁漏洞 ③MSF生成后门 在此直接使用MSF生成后门 MSF中有三个代理模块&#x…

【Kurbernetes部署】知识点总结(部署方式、网络插件.....)

知识点合集 一、Kurbernetes常见的部署方式1.1 Minikube(一般不用)1.2 Kubeadm1.3 二进制安装部署(推荐使用的方式) 二、二进制部署Kurbetnetes的思路Step1 部署etcdStep2 部署master组件Step3 部署node组件Step4 部署多master高可…

leetcode:160. 相交链表

一、题目 原题链接:160. 相交链表 - 力扣(LeetCode) 函数原型: struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) 二、思路 判断两个链表是否相交,只要判断两个链表是否有相同的…

3 分钟看完 NVIDIA GPU 架构及演进

近期随着 AI 市场的爆发式增长,作为 AI 背后技术的核心之一 GPU(图形处理器)的价格也水涨船高。GPU 在人工智能中发挥着巨大的重要,特别是在计算和数据处理方面。目前生产 GPU 主流厂商其实并不多,主要就是 NVIDIA、AM…

利用IP风险画像强化金融行业网络安全防御

在数字化时代,金融行业日益依赖互联网和技术创新,但这也使得金融机构成为网络攻击的主要目标。为了应对日益复杂的网络威胁,金融机构迫切需要采用先进的安全技术和工具。其中,IP风险画像技术成为提升网络安全的一项重要策略。 1.…

深度学习检测小目标常用方法

前言 在深度学习目标检测中,特别是人脸检测中,小目标、小人脸的检测由于分辨率低,图片模糊,信息少,噪音多,所以一直是一个实际且常见的困难问题。不过在这几年的发展中,也涌现了一些提高小目标…

国家数据局正式揭牌,2030年数据要素市场规模或破万亿

10月25日,国家数据局正式挂牌! 自今年3月国务院通过《党和国家机构改革方案》提出组建国家数据局以来,国家数据局的组建工作一直在紧锣密鼓地进行中。经过7个月的筹备工作,国家数据局于2023年10月25日挂牌成立。 根据《党和国家机…

使用Dockerfile依赖maven基础镜像部署springboot的程序案例

1、准备springboot Demo代码 就一个controller层代码,返回当前时间及hello world 2、项目根目录下,新建DockerFile文件 注意,等本地配置完毕后,Dockerfile文件需要与项目helloworld同级,这里先放项目里面 3、docker …

从零开始搭建React+TypeScript+webpack开发环境-基于lerna的webpack项目工程化改造

项目背景 在实际项目中,我们的前端项目往往是一个大型的Webpack项目,结构较为复杂。项目根目录下包含了各种配置文件、源代码、以及静态资源,整体布局相对扁平。Webpack的配置文件分散在不同的部分,包括入口文件、输出目录、加载…

【JMeter】组件之 Listener监听器选择

JMeter中监听器的作用就是收集、显示JMeter取样器的结果,并以树形、图表、表格的形式显示出来。还可以将监听结果保存成文件。 View Results Tree-->察看结果树 Summary Report-->汇总报告 为测试中的每个不同命名的请求创建一行。这与聚合报告类似&#xff…

【扩散模型】实战:创建一个类别条件扩散模型

创建一个类别条件扩散模型 1. 配置和数据准备2. 创建一个以类别为条件的UNet模型3. 训练和采样 本文介绍一种给扩散模型添加额外条件信息的方法。具体地,将在MNIST数据集上训练一个以类别为条件的扩散模型。并且可以在推理阶段指定想要生成的是哪个数字。 1. 配置和…