Linux 多线程控制详解

news2024/11/25 7:15:55

目录

多线程编临界资源访问

互斥锁 API 简述

初始化互斥量

互斥量加锁/解锁

互斥量加锁(非阻塞方式)

互斥量销毁

程序示例

多线程编执行顺序控制

信号量 API 简述

初始化信号量

信号量 P/V 操作

信号量申请(非阻塞方式)

信号量销毁

程序示例

条件变量

创建和销毁条件变量

等待条件变量

通知条件变量

程序示例

总结

线程使用流程图

互斥量使用流程图

信号量使用流程图


多线程编临界资源访问

当线程在运行过程中,去操作公共资源,如全局变量的时候,可能会发生彼 此“矛盾”现象。

例如线程 1 企图想让变量自增,而线程 2 企图想要变量自减, 两个线程存在互相竞争的关系导致变量永远处于一个“平衡状态”,两个线程互相竞争,线程 1 得到执行权后将变量自加,当线程 2 得到执行权后将变量自减, 变量似乎永远在某个范围内浮动,无法到达期望数值

如例程 9 所示

测试例程 9:(Phtread_txex9.c)

#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>


int Num = 0;

void *fun1(void *arg)
{
	while(Num < 3){
		Num++;
		printf("%s:Num = %d\n",__FUNCTION__,Num);
		sleep(1);
	}
	pthread_exit(NULL);
}

void *fun2(void *arg)
{
	while(Num > -3){
		Num--;
		printf("%s:Num = %d\n",__FUNCTION__,Num);
		sleep(1);
	}
	pthread_exit(NULL);
}

int main()
{
	int ret;
	pthread_t tid1,tid2;
	ret = pthread_create(&tid1,NULL,fun1,NULL);
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	ret = pthread_create(&tid2,NULL,fun2,NULL);
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	pthread_join(tid1,NULL);
	pthread_join(tid2,NULL);
	return 0;
}

运行结果:

为了解决上述对临界资源的竞争问题,pthread 线程引出了互斥锁来解决临界资源访问。通过对临界资源加锁来保护资源只被单个线程操作,待操作结束后解锁,其余线程才可获得操作权。

互斥锁 API 简述

多个线程都要访问某个临界资源,比如某个全局变量时,需要互斥地访问: 我访问时,你不能访问。

可以使用以下函数进行互斥操作。

初始化互斥量

函数原型如下:

int pthread_mutex_init(phtread_mutex_t *mutex, const pthread_mutexattr_t *restrict attr);

该函数初始化一个互斥量,第一个参数是改互斥量指针,第二个参数为控制互斥量的属性,一般为 NULL。当函数成功后会返回 0,代表初始化互斥量成功。

当然初始化互斥量也可以调用宏来快速初始化,代码如下:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITALIZER;

互斥量加锁/解锁

函数原型如下:

互斥量加锁(阻塞)/解锁

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

成功:返回 0

lock 函数与 unlock 函数分别为加锁解锁函数,只需要传入已经初始化好的 pthread_mutex_t 互斥量指针。成功后会返回 0。

当某一个线程获得了执行权后,执行 lock 函数,一旦加锁成功后,其余线 程遇到 lock 函数时候会发生阻塞,直至获取资源的线程执行 unlock 函数后。 unlock 函数会唤醒其他正在等待互斥量的线程。

特别注意的是,当获取 lock 之后,必须在逻辑处理结束后执行 unlock,否则会发生死锁现象!导致其余线程一直处于阻塞状态,无法执行下去。在使用互 斥量的时候,尤其要注意使用 pthread_cancel 函数,防止发生死锁现象!

互斥量加锁(非阻塞方式)

函数原型如下:

互斥量加锁(非阻塞)

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);

该函数同样也是一个线程加锁函数,但该函数是非阻塞模式通过返回值来 判断是否加锁成功,用法与上述阻塞加锁函数一致。

互斥量销毁

函数原型如下:

互斥量销毁

#include <pthread.h>

int pthread_mutex_destory(pthread_mutex_t *mutex);

成功:返回 0

该函数是用于销毁互斥量的,传入互斥量的指针,就可以完成互斥量的销毁,成功返回 0。

程序示例

测试例程 10:(Phtread_txex10.c)

#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

pthread_mutex_t mutex; //互斥量变量 一般申请全局变量

int Num = 0; //公共临界变量

void *fun1(void *arg)
{
	pthread_mutex_lock(&mutex); //加锁 若有线程获得锁,则会阻塞
	while(Num < 3){
		Num++;
		printf("%s:Num = %d\n",__FUNCTION__,Num);
		sleep(1);
	}
	pthread_mutex_unlock(&mutex); //解锁
	pthread_exit(NULL); //线程退出 pthread_join 会回收资源
}

void *fun2(void *arg)
{ 
	pthread_mutex_lock(&mutex); //加锁 若有线程获得锁,则会阻塞
	while(Num > -3){
		Num--;
		printf("%s:Num = %d\n",__FUNCTION__,Num);
		sleep(1);
	}
	pthread_mutex_unlock(&mutex); //解锁
	pthread_exit(NULL); //线程退出 pthread_join 会回收资源
}

int main()
{
	int ret;
	pthread_t tid1,tid2; 
	ret = pthread_mutex_init(&mutex,NULL); //初始化互斥量
	if(ret != 0){
		perror("pthread_mutex_init");
		return -1;
	}
	ret = pthread_create(&tid1,NULL,fun1,NULL); //创建线程 1
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	ret = pthread_create(&tid2,NULL,fun2,NULL); //创建线程 2
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	pthread_join(tid1,NULL); //阻塞回收线程 1
	pthread_join(tid2,NULL); //阻塞回收线程 2
	pthread_mutex_destroy(&mutex); //销毁互斥量

	return 0;
}

运行结果:

上述例程通过加入互斥量,保证了临界变量某一时刻只被某一线程控制, 实现了临界资源的控制。需要说明的是,线程加锁在循环内与循环外的情况。

本历程在进入 while 循环前进行了加锁操作,在循环结束后进行的解锁操作, 如果将加锁解锁全部放入 while 循环内,作为单核的机器,执行结果无异,当有多核机器执行代码时,可能会发生“抢锁”现象,这取决于操作系统底层的实现。

多线程编执行顺序控制

解决了临界资源的访问,但似乎对线程的执行顺序无法得到控制,因线程都是无序执行,之前采用 sleep 强行延时的方法勉强可以控制执行顺序,但此方法在实际项目情况往往是不可取的,其仅仅可解决线程创建的顺序,当创建之后执行的顺序又不会受到控制,于是便引入了信号量的概念,解决线程执行顺序。

测试例程 11:(Phtread_txex11.c)

#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

void *fun1(void *arg)
{
	printf("%s:Pthread Come!\n",__FUNCTION__);
	pthread_exit(NULL);
}

void *fun2(void *arg)
{
	printf("%s:Pthread Come!\n",__FUNCTION__);
	pthread_exit(NULL);
}

void *fun3(void *arg)
{
	printf("%s:Pthread Come!\n",__FUNCTION__);
	pthread_exit(NULL);
}

int main()
{
	int ret;
	pthread_t tid1,tid2,tid3;
	ret = pthread_create(&tid1,NULL,fun1,NULL);
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	ret = pthread_create(&tid2,NULL,fun2,NULL);
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	ret = pthread_create(&tid3,NULL,fun3,NULL);
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	pthread_join(tid1,NULL);
	pthread_join(tid2,NULL);
	pthread_join(tid3,NULL);
	return 0;
}

运行结果:通过上述例程可以发现,多次执行该函数其次序是无序的,线程之间的竞 争无法控制,通过使用信号量来使得线程顺序为可控的。

信号量 API 简述

注意:信号量跟互斥量不一样,互斥量用来防止多个线程同时访问某个临界资源。信号量起通知作用,线程 A 在等待某件事,线程 B 完成了这件事后就 可以给线程 A 发信号。

初始化信号量

函数原型如下:

int sem_init(sem_t *sem,int pshared,unsigned int value);

  • 该函数可以初始化一个信号量,第一个参数传入 sem_t 类型指针;
  • 第二个参数传入 0 代表线程控制,否则为进程控制;
  • 第三个参数表示信号量的初始值,0 代表阻塞,1 代表运行。
  • 待初始化结束信号量后,若执行成功会返回 0。

信号量 P/V 操作

函数原型如下:

#include <pthread.h>

int sem_wait(sem_t *sem);

int sem_post(sem_t *sem);

成功:返回 0

  • sem_wait 函数作用为检测指定信号量是否有资源可用,若无资源可用会阻塞等待,若有资源可用会自动的执行“sem-1”的操作。所谓的“sem-1”是与上述 初始化函数中第三个参数值一致,成功执行会返回 0。
  • sem_post 函数会释放指定信号量的资源,执行“sem+1”操作。

通过以上 2 个函数可以完成所谓的 PV 操作,即信号量的申请与释放,完成 对线程执行顺序的控制。

信号量申请(非阻塞方式)

函数原型如下:

#include <pthread.h>

int sem_trywait(sem_t *sem);

成功:返回 0

此函数是信号量申请资源的非阻塞函数,功能与 sem_wait 一致,唯一区别在于此函数为非阻塞。

信号量销毁

函数原型如下:

#include <pthread.h>

int sem_destory(sem_t *sem);

成功:返回 0

该函数为信号量销毁函数,执行过后可将信号量进行销毁

程序示例

测试例程 12:(Phtread_txex12.c)

#define _GNU_SOURCE 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <semaphore.h>

sem_t sem1,sem2,sem3;//申请的三个信号量变量

void *fun1(void *arg)
{
	sem_wait(&sem1);//因sem1本身有资源,所以不被阻塞 获取后sem1-1 下次会会阻塞
	printf("%s:Pthread Come!\n",__FUNCTION__);
	sem_post(&sem2);// 使得sem2获取到资源
	pthread_exit(NULL);
}

void *fun2(void *arg)
{
	sem_wait(&sem2);//因sem2在初始化时无资源会被阻塞,直至14行代码执行 不被阻塞 sem2-1 下次会阻塞
	printf("%s:Pthread Come!\n",__FUNCTION__);
	sem_post(&sem3);// 使得sem3获取到资源
	pthread_exit(NULL);
}

void *fun3(void *arg)
{
	sem_wait(&sem3);//因sem3在初始化时无资源会被阻塞,直至22行代码执行 不被阻塞 sem3-1 下次会阻塞
	printf("%s:Pthread Come!\n",__FUNCTION__);
	sem_post(&sem1);// 使得sem1获取到资源
	pthread_exit(NULL);
}

int main()
{
	int ret;
	pthread_t tid1,tid2,tid3;
	ret = sem_init(&sem1,0,1);  //初始化信号量1 并且赋予其资源
	if(ret < 0){
		perror("sem_init");
		return -1;
	}
	ret = sem_init(&sem2,0,0); //初始化信号量2 让其阻塞
	if(ret < 0){
		perror("sem_init");
		return -1;
	}
	ret = sem_init(&sem3,0,0); //初始化信号3 让其阻塞
	if(ret < 0){
		perror("sem_init");
		return -1;
	}
	ret = pthread_create(&tid1,NULL,fun1,NULL);//创建线程1
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	ret = pthread_create(&tid2,NULL,fun2,NULL);//创建线程2
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	ret = pthread_create(&tid3,NULL,fun3,NULL);//创建线程3
	if(ret != 0){
		perror("pthread_create");
		return -1;
	}
	/*回收线程资源*/
	pthread_join(tid1,NULL);
	pthread_join(tid2,NULL);
	pthread_join(tid3,NULL);

	/*销毁信号量*/
	sem_destroy(&sem1);
	sem_destroy(&sem2);
	sem_destroy(&sem3);

	return 0;
}

运行结果:

该例程加入了信号量,使得线程的执行顺序变为可控的。在初始化信号量时, 将信号量 1 填入资源,第一个线程调用 sem_wait 函数可以成功获得信号量,在 执行完逻辑后使用 sem_pos 函数来释放。当执行函数 sem_wait 后,会执行 sem 自减操作,使下一次竞争被阻塞,直至通过 sem_pos 被释放

上述例程因 38 行初始化信号量 1 时候,使其默认获取到资源;

第 43、48 行 初始化信号量 2、3 时候,使之没有资源。于是在线程处理函数中,每个线程通过 sem_wait 函数来等待资源,发生阻塞。因信号量 1 初始值为有资源,故可以 先执行线程 1 的逻辑。待执行完第 12 行 sem_wait 函数,会导致 sem1-1,使得 下一次此线程会被阻塞。继而执行至 14 行,通过 sem_post 函数使 sem2 信号量 获取资源,从而冲破阻塞执行线程 2 的逻辑...以此类推完成线程的有序控制。

条件变量

条件变量时一种同步机制,用来通知其他线程条件满足了。一般是用来通知对方共享数据的状态信息,因此条件变量是结合互斥量来使用的。

创建和销毁条件变量

函数原型如下:

#include <pthread.h>

// 初始化条件变量 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);//cond_attr 通常为 NULL

// 销毁条件变量

int pthread_cond_destroy(pthread_cond_t *cond);

这些函数成功时都返回 0

等待条件变量

函数原型如下:

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

这需要结合互斥量一起使用,示例代码如下:

pthread_mutex_lock(&g_tMutex);

// 如果条件不满足则,会 unlock g_tMutex

// 条件满足后被唤醒,会 lock g_tMutex pthread_cond_wait(&g_tConVar, &g_tMutex);

/* 操作临界资源 */

pthread_mutex_unlock(&g_tMutex);

通知条件变量

函数原型如下:

int pthread_cond_signal(pthread_cond_t *cond);

pthread_cond_signal 函数只会唤醒一个等待 cond 条件变量的线程,示例代码如下:

pthread_cond_signal(&g_tConVar);

程序示例

总结

线程使用流程图

有关多线程的创建流程如图 所示,首先需要创建线程,一旦线程创 建完成后,线程与线程之间会发生竞争执行,抢占时间片来执行线程逻辑。在 创建线程时候,可以通过创建线程的第四个参数传入参数,在线程退出时亦可 传出参数被线程回收函数所回收,获取到传出的参数。

互斥量使用流程图

当多个线程出现后,会遇到同时操作临界公共资源的问题,当线程操作公 共资源时需要对线程进行保护加锁,防止其与线程在此线程更改变量时同时更 改变量,待逻辑执行完毕后再次解锁,使其余线程再度开始竞争。互斥锁创建 流程下图所示。

信号量使用流程图

当多个线程出现后,同时会遇到无序执行的问题。有时候需要对线程的执行顺序做出限定,变引入了信号量,通过 PV 操作来控制线程的执行顺序,如下图所示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1194531.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分享一个JavaScript后台管理项目超实用的提示框

目录 新建js文件 设置css样式 html布局 script代码 调用方式 展示效果 新建js文件 首先我们需要新建一个js文件夹&#xff0c;将下方代码丢进去 "use strict";function _typeof(obj) { "babel/helpers - typeof"; if (typeof Symbol "f…

C/C++输出硬币翻转 2021年6月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 C/C硬币翻转 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C硬币翻转 2021年6月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 假设有N个硬币(N为不大于5000的正整数)&#xff0c;从1…

【Linux】tree命令的独特用法

有关tree命令&#xff0c;我们只知道它可以将文件目录以树状图的形式展示&#xff0c;但其实还有很多有意思的功能可以使用。 一、tree命令的安装 各linux版本不同&#xff0c;但软件包名字就叫tree&#xff0c;直接安装即可 ubuntu&#xff1a; apt install tree centos&a…

rust实现quic服务端和客户端

演示如何使用 Quinn 库实现一个简单的 QUIC 客户端和服务器。QUIC 是一种基于 UDP 的协议&#xff0c;用于在互联网上进行快速和安全的通信。 在程序中&#xff0c;使用了 Rust 的标准库中的 error、net 和 sync 模块&#xff0c;以及第三方库 tokio 和 quinn。程序使用了 asy…

智慧畜牧小程序开发流程

本文将详细介绍智慧畜牧小程序的开发流程&#xff0c;包括需求分析、设计、开发、测试和上线等环节。同时&#xff0c;将深入思考智慧畜牧小程序的发展趋势和未来挑战&#xff0c;为读者提供有深度的思考和逻辑性的分析。 一、需求分析 1.明确目标用户&#xff1a;首先…

tomcat+idea--如何在idea上发布项目

对应于idea2022以后的版本 &#xff08;一&#xff09;如何配置idea上的tomcat&#xff1f; 1、新建一个项目&#xff0c;左上角File&#xff0c;new&#xff0c;project&#xff0c;新建后就和普通的java项目一样。 2、然后点击项目名&#xff0c;右键选择“Add framework s…

Node.js中的child_process模块的作用

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

unity line renderer绘制的颜色不是想要的红色

线条不是暗红色的&#xff0c;用的是默认的红色 将材质选则为如下即可

数据结构-图的遍历

广度优先遍历&#xff08;BFS&#xff09; 树的遍历&#xff1a;不存在“回路”&#xff0c;搜索相邻的结点时&#xff0c;不可能搜到已经访问过的结点 图的遍历&#xff1a;搜索相邻的顶点时&#xff0c;有可能搜到已经访问过的顶点 要点&#xff1a; 找到与一个顶点相邻的所…

Postman基本页面和请求/响应页签介绍

近期在复习Postman的基础知识&#xff0c;在小破站上跟着百里老师系统复习了一遍&#xff0c;也做了一些笔记&#xff0c;希望可以给大家一点点启发。 一、Postman的界面介绍 Home主页、Workspace工作空间、Collections集合、Environments环境变量、Mock Server虚拟服务器、Mo…

Git图形化界面GUI的使用SSH协议及idea集成Git

前言 图形化界面&#xff08;GUI&#xff0c;Graphical User Interface&#xff09;是一种用户与计算机程序或操作系统交互的方式&#xff0c;通过图形元素&#xff0c;如图标、按钮、窗口等&#xff0c;而不是通过命令行来完成操作。GUI的设计旨在让用户通过直观的图形界面进行…

云表|低代码开发是否真的靠谱?一试便知

最近&#xff0c;“低代码”这个概念在技术圈里火了起来&#xff0c;引发了广泛的讨论。一些人对其赞不绝口&#xff0c;认为它具有诸多优点&#xff0c;如减少开发周期&#xff0c;提高系统开发效率&#xff0c;降低开发成本&#xff0c;学习成本低等。他们甚至预测&#xff0…

lv11 嵌入式开发 ARM体系结构理论基础(寄存器)3

目录 1 寄存器 2 ARM寄存器 2.1 专用寄存器 1 寄存器 概念 寄存器是处理器内部的存储器&#xff0c;没有地址 作用 一般用于暂时存放参与运算的数据和运算结果 注&#xff1a;全局变量不应该存入寄存器&#xff0c;数量有限会占用寄存器资源&#xff0c;寄存器读…

矩阵的除法

B/A 如果矩阵A可逆&#xff0c;那么 证明&#xff1a; A/AB 如果矩阵A和B都可逆&#xff0c;那么 证明&#xff1a;

人工智能基础——Python:Numpy与矩阵

人工智能的学习之路非常漫长&#xff0c;不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心&#xff0c;我为大家整理了一份600多G的学习资源&#xff0c;基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得…

OTA包添加自定义内容

起因 新开一条线&#xff0c;需要上传的OTA包里加点内容&#xff0c;好让后台校验它是否是当前这条线(短期最小改动)。 开整 之前看过ota包结构&#xff0c;整包和差分包里都有一个payload_properties.txt文件&#xff0c;所以最简单的就是给这个txt文件里追加点自定义内容&…

NodeJs - 集合对象序列化问题

NodeJs - 集合对象序列化问题 一. 集合对象的序列化问题1.1 Map 和 Object 的区别1.2 Map 的相关转换Map 和 Array 互转Map 和 Object 互转 1.3 Set 的相关转换Set 和 Array 互转 一. 集合对象的序列化问题 案例如下&#xff1a;我们创建一个Map和一个Set集合&#xff0c;并用…

宋浩高等数学笔记(三)微分中值定理

首先是考研大纲包含的内容&#xff1a; 1.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理&#xff0c;了解并会用柯西(Cauchy)中值定理. 2.掌握用洛必达法则求未定式极限的方法. 3.理解函数的极值概念&#xff0c;掌握用导数判断函数的单调性和求函…

黑窗口连接远程服务

ssh root192.168.x.x 回车输入密码 查看docker docker ps 停止正在运行的服务 docker stop xxxxx 删除服务 docker rm xxxxx 查看镜像 docker images 删除镜像 docker rmi xxxxx 删除镜像 启动并运行整个服务 docker compose up -d jar包名称 idea 使用tcp方式连接docker 配置d…

mongo实际业务场景实战

业务场景 有四个业务信息,分别是适用部门、适用岗位、适用职级、适用专业。 1.适用部门有三个层级类似D001表示一级部门、D001002表示二级部门、D001002001表示三级部门,ALL表示所有部门。 2.适用岗位有岗位A、岗位B、ALL等,ALL表示适用所有岗位。 3.适用职级有M-1,M-2、AL…