后入能先出,一文搞懂栈

news2024/11/24 18:57:41

目录

    • 什么是栈
    • 数组实现
    • 链表实现
    • 栈能这么玩
    • 总结

什么是栈

栈在我们日常编码中遇到的非常多,很多人对栈的接触可能仅仅局限在 递归使用的栈 和 StackOverflowException,栈是一种后进先出的数据结构(可以想象生化金字塔的牢房和生化角斗场的狗洞)。

image-20231102234445811

栈(stack)是一种运算受限的线性数据结构,它具有以下特点:

1. 运算受限: 栈限定仅在表尾进行插入和删除操作,这一端被称为栈顶,而另一端称为栈底。这限制了对栈的操作,只能按照后进先出(LIFO,Last-In-First-Out)的原则进行插入和删除操作。插入操作又称为进栈、入栈或压栈,它将新元素放到栈顶,使之成为新的栈顶元素;删除操作又称为出栈或退栈,它将栈顶元素删除,使其相邻的元素成为新的栈顶元素。

2. 线性表: 栈也是一种线性表,它表示数据元素之间的逻辑关系是线性的。虽然具体实现可以使用数组或链表等不同的物理存储结构,但逻辑上各个元素之间是相邻的,操作也是按照顺序进行的。

3. 栈顶和栈底: 栈的逻辑结构中有栈顶和栈底的概念。栈顶表示可以进行插入和删除操作的一端,通常与数组的末尾或链表的头部有关。栈底则是相对的另一端,用于限制操作的另一端。

4. 栈的应用: 栈在计算机科学和编程中有广泛的应用,例如程序执行调用堆栈、四则运算表达式求值、非递归算法实现、括号匹配问题、浏览器历史、内存分配、任务管理等的解决。掌握栈是非常重要的,它是必须了解的数据结构之一。

栈可以使用数组或链表来实现,选择合适的实现方式取决于具体的应用场景和性能需求。数组实现的栈通常更适合于需要固定大小的栈(当然也可以进行扩容),而链表实现的栈可以动态扩展,适用于不确定大小的栈。在栈的操作中,栈顶元素是非常关键的,因为它在插入和删除操作中起着重要作用。

总之,栈是一个非常有用的数据结构,它在计算机科学中扮演着重要的角色,了解它的特性和应用对于编程和算法设计至关重要。

对于一个栈的接口,我们简易定义如下:

public interface Stack<T> {
    void push(T item);      // 压栈
    T pop();               // 弹栈
    T peek();              // 获取栈顶元素
    boolean isEmpty();     // 判断栈是否为空
    int size();            // 返回栈的大小
}

数组实现

数组实现的栈用的比较多,我们经常刷题也会用数组去实现一个简单的栈去解决简单的问题。

结构设计

对于数组来说,我们模拟栈的过程很简单,因为栈是后进先出,我们很容易在数组的末尾进行插入和删除。所以我们选定末尾为栈顶。所以对于一个栈所需要的基础元素是 一个array[]数组和一个size表示大小,还需要一个负载因子表示数组的大小。

push入栈操作

  • 如果数组满了,需要扩容
  • size位置赋值, array[size++] = data;

image-20231105213018107

pop弹出栈并返回首位

  • 如果栈不为空,可以弹出。return array[--size];

如下图,当栈中还剩1,2,3,4执行pop操作,栈顶变为3的位置并且返回4

image-20231105213649409

peek返回栈顶

  • peek操作时返回栈顶不弹出,所以栈不为空时候return data[size-1]即可。

数组实现:

import java.util.EmptyStackException;

public class SeqStack<T> implements Stack<T> {

    private T array[];
    private int size;
    private static final int DEFAULT_CAPACITY = 10;

    public SeqStack() {
        this.size = 0;
        array = (T[]) new Object[DEFAULT_CAPACITY];
    }

    @Override
    public void push(T data) {
        if (size == array.length) {
            // 如果数组已满,扩展数组
            resizeArray();
        }
        array[size++] = data;
    }

    @Override
    public T pop() {
        if (isEmpty()) {
            throw new EmptyStackException();
        }
        // 下面可以写成 return array[--size];
        T data = array[size - 1];
        size--;
        return data;
    }

    @Override
    public T peek() {
        if (isEmpty()) {
            throw new EmptyStackException();
        }
        return array[size - 1];
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    @Override
    public int size() {
        return size;
    }

    private void resizeArray() {
        int newCapacity = (int) (array.length * 2);
        T[] newArray = (T[]) new Object[newCapacity];
        for (int i = 0; i < size; i++) {
            newArray[i] = array[i];
        }
        array = newArray;
    }
}

链表实现

栈可以使用数组或链表来实现,两种思路如下:

  1. 链表尾部作为栈顶: 在数组实现中,栈的操作是在尾部进行插入和删除。链表中即使使用尾指针可以提高尾部插入效率,但删除操作仍然需要查找前驱节点。要实现高效的删除操作,需要使用双向链表,这增加了整个结构的复杂性。
  2. 链表头部作为栈顶: 在这种实现中,栈的设计不带头节点的单链表(不需要哑结点),所有操作都在链表的头部进行。头部插入删除都很方便效率比较高,编写代码也很简单。

基础结构

public class LinkedStack<T> implements Stack<T> {
    private Node<T> top;
    private int size;

    public LinkedStack() {
        top = null;
        size = 0;
    }

    private static class Node<T> {
        T data;
        Node<T> next;
        public Node(T data) {
            this.data = data;
            this.next = null;
        }
    }
  //其他方法
}

push入栈

与不带头结点单链表头插入一致

  • 创建新节点
  • 新节点的next指向栈顶节点top
  • 栈顶节点top指向新节点,表示这个节点为新的栈顶节点
  • size++

部分操作流程如下图

image-20231105221137828

pop弹出

与不带头结点单链表头插入一致

  • 判断是否为空
  • 记录头结点top的值data
  • 头结点top指向top.next
  • size–,返回前面记录的值data

部分操作流程如下图

image-20231105222129654

peek返回栈顶

不为空的时候返回 top.data即可

链表实现:

import java.util.EmptyStackException;

public class LinkedStack<T> implements Stack<T> {
    private Node<T> top;
    private int size;

    public LinkedStack() {
        top = null;
        size = 0;
    }

    private static class Node<T> {
        T data;
        Node<T> next;

        public Node(T data) {
            this.data = data;
            this.next = null;
        }
    }

    @Override
    public void push(T item) {
        Node<T> newNode = new Node<>(item);
        newNode.next = top;
        top = newNode;
        size++;
    }

    @Override
    public T pop() {
        if (isEmpty()) {
            throw new EmptyStackException();
        }
        T data = top.data;
        top = top.next;
        size--;
        return data;
    }

    @Override
    public T peek() {
        if (isEmpty()) {
            throw new EmptyStackException();
        }
        return top.data;
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    @Override
    public int size() {
        return size;
    }
}

栈能这么玩

既然上面详细讲解设计栈,这里来两道栈非常经典非常经典的例题(非常高频,很容易忘,又很重要,普通问题就不放的)

力扣20有效的括号:

题意:给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。

有效字符串需满足:

左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
注意空字符串可被认为是有效字符串。

示例 :

输入: "()[]{}"
输出: true

示例 :

输入: "([)]"
输出: false

分析:
括号类的问题是经典栈类问题,肯定要想到用栈处理。判断一个字符串满不满足一个有效的字符串,就要看它是不是都能组成对。

从单个括号对来说,((,))都是不满足的,只有()才可满足,即一左一右。

从多个括号对来说 {[(字符串还可接受任意无限([,{的括号。但是如果向左的括号只能先接收)括号(变成{[)。

从上面可以看作一种相消除的思想。例如(({[()()]}))字符串遍历时候可以这样处理:

  • (({[(下一个)消掉成(({[
  • (({[(下一个)消掉成(({[
  • (({[下一个]消掉成(({
  • (({下一个}消掉成((
  • ((下一个)消掉成(
  • (下一个)消掉成 这样就满足题意

每次操作的时候都判断剩余有效括号最顶部那个括号是否能够和遍历的相消除,这个过程利用栈判断当前是加入栈还是消除顶部,到最后如果栈为空说明满足,否则不满足,当然具体括号要对应,具体实现代码为:

public boolean isValid(String s) {
    Stack<Character> stack = new LinkedStack<Character>();
    for (int i = 0; i < s.length(); i++) {
        char te = s.charAt(i);
        if (te == ']') {
            if (!stack.isEmpty() && stack.pop() == '[')
                continue;
            else {
                return false;
            }
        } else if (te == '}') {
            if (!stack.isEmpty() && stack.pop() == '{')
                continue;
            else {
                return false;
            }
        } else if (te == ')') {
            if (!stack.isEmpty() && stack.pop() == '(') {
                continue;
            } else {
                return false;
            }
        } else {
            stack.push(te);
        }
    }
    return stack.isEmpty();
}

当然,JDK自带的栈用起来不快,可以用数组优化:

public boolean isValid(String s) {
    char a[] = new char[s.length()];
    int index = -1;
    for (int i = 0; i < s.length(); i++) {
        char te = s.charAt(i);
        if (te == ']') {
            if (index >= 0 && a[index] == '[')
                index--;
            else {
                return false;
            }
        } else if (te == '}') {
            if (index >= 0 && a[index] == '{')
                index--;
            else {
                return false;
            }
        } else if (te == ')') {
            if (index >= 0 && a[index] == '(')
                index--;
            else {
                return false;
            }
        } else {
            a[++index] = te;
        }
    }
    return index == -1;
}

力扣32最长有效括号(困难)

题目描述:给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。

示例 :

输入: “(()”
输出: 2
解释: 最长有效括号子串为 “()”

示例 :

输入: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”

方案一暴力

这种题核心思想就是使用栈模拟。本题的话更简单一点因为只有()两种括号,使用暴力的时候就可以循环每次找到最长的有效括号。而括号匹配的时候可以直接终止的情况是)右括号多出无法匹配。

例如())(到第三个不可能和前面相连。如果来(只需要期待后面能够来),一个)可以和一个(组成一对,消除栈中的一个(

当然,在具体的实现上,我们用数组模拟栈,实现代码为:

public int longestValidParentheses(String s) {
    char str[] = s.toCharArray();//字符数组
    int max = 0;
    for (int i = 0; i < str.length - 1; i++) {
        int index = -1;
        if (max >= str.length - i)
            break;
        for (int j = i; j < str.length; j++) {
            if (str[j] == '(') {
                index++;
            } else {
                if (index < 0) {
                    i = j;
                    break;
                } else {
                    index--;
                }
            }
            if (index == -1 && (j - i + 1 > max)) {
                max = j - i + 1;
            }
        }
    }
    return max;
}

这个复杂度太高,我们看看如何用栈优化。

方案二栈优化

如何将这道题从一个O(n^2)的时间复杂度优化到O(n)?这其实非常简单,只需要注意处理的过程。让我们首先考虑一些可能的最大情况。

  • ( ) ) ( ) ( ( ) ( ) ) 最大为后面部分(空格分开)
  • ( ) ( ) ( ( ( ) 最大为前面部分
  • ( ( ( ( ( ( ) ( ) ( ) ( ) 最大为后面部分

在处理这道题时,我们会注意到不同类型的括号可能会有一些区别:
(:左括号一旦出现那么他就期待一个)进行匹配,但它的后面可能有)并且在这中间有很多其他括号对。
):右扩号有两种情况:

  • 一种是当前已经超过左括号前面已经不可能连续了。例如( ) ) ( )第三个括号出现已经使得整个串串不可能连续,最大要么在其左面要么再其右面。 你可以理解其为一种清零初始机制。
  • 另一种情况)就是目标栈中存在(可与其进行匹配。匹配之后要叠加到消除后平级的数量上,并且判断是否是最大值。(下面会解释)

具体实现的思路上,就是使用一个int数组标记当前层级(栈深)有正确的括号数量。 模拟一次栈行为从左向右,遇到)太多(当前栈中不存在(进行匹配)就将数据清零重新开始。这样一直到最后。你可以把它看成台接,遇到(就上一个台阶并清零该新台阶,遇到)就下一个台阶并且把数量加到下降后的台阶上。具体可以看下面图片模拟的过程:
( ) ( ( ) ( ) ( ( ) ) )

image-20231105224429516

具体实现代码为:

public static int longestValidParentheses(String s) {
    int max = 0;
    int value[] = new int[s.length() + 1];
    int index = 0;
    for (int i = 0; i < s.length(); i++) {
        if (s.charAt(i) == '(') {
            index++;
            value[index] = 0;
        } else {//")"
            if (index == 0) {
                value[0] = 0;
            } else {
                value[index - 1] += value[index--] + 2;//叠加
                if (value[index] > max)//更新
                    max = value[index];
            }
        }
    }
    return max;
}

用栈也可以实现,但是效率比数组略低:

public int longestValidParentheses(String s) {
  int maxans = 0;
  Stack<Integer> stack = new Stack<>();
  stack.push(-1);
  for (int i = 0; i < s.length(); i++) {
    if (s.charAt(i) == '(') {//(将当前的 
      stack.push(i);
    } else {
      stack.pop();
      if (stack.empty()) {
        stack.push(i);
      } else {//i-stack.peek就是i是出现的总个数 peek是还没匹配的个数
        maxans = Math.max(maxans, i - stack.peek());
      }
    }
  }
  return maxans;
}

总结

到这里,本文对栈的介绍就结束了,相信你可以手写个栈并且可以小试牛刀解决括号匹配问题!当然栈能解决的问题还有很多比如接雨水问题、二叉树非递归遍历等等,有些重要的还会再总结。

系列仓库地址:https://github.com/javasmall/bigsai-algorithm
csdn专栏:数据结构与算法专栏

写一篇原创不易,还请点赞、收藏、关注三连支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1189971.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringCache(Redis)

一、springcache是什么 springcache是spring的缓存框架&#xff0c;利用了AOP&#xff0c;实现了基于注解的缓存功能&#xff0c;并且进行了合理的抽象&#xff0c;业务代码不用关心底层是使用了什么缓存框架&#xff0c;只需要简单地加一个注解&#xff0c;就能实现缓存功能了…

基于SSM的劳务外包管理系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

如何写一篇吊炸天的竞品分析

这段时间&#xff0c;除了撩妹之外&#xff0c;最多的就是竞品分析了。最近很多临近毕业的同学也在四处应聘产品岗&#xff0c;而一份不错的竞品分析一定能为你的求职加分不少。于是&#xff0c;有着菩萨心肠天使面孔魔鬼身材的我&#xff0c;就来教大家怎么做一份完整的竞品分…

gitlab-ce-12.3.5 挖矿病毒及解决方案

前言 最近发现在使用gitlab提交代码的时候总是失败&#xff0c;一访问gitlab还时常报503&#xff0c;于是使用 top 命令查看了内存占用情况&#xff0c;发现了一个git进程内存使用了2.3g&#xff0c;cpu还一直占用300-400%&#xff0c; 以前不知道gitlab还有病毒&#xff0c;只…

Python的版本如何查询?

要查询Python的版本&#xff0c;可以使用以下方法之一&#xff1a; 1.在命令行中使用python --version命令。这会显示安装在计算机上的Python解释器的版本号。 # Author : 小红牛 # 微信公众号&#xff1a;wdPython2.在Python脚本中使用import sys语句&#xff0c;然后打印sy…

ppt聚光灯效果

1.放入三张图片内容或其他 2.全选复制成图片 3.设置黑色矩形&#xff0c;透明度30% 4.粘贴复制后的图片&#xff0c;制定图层 5.插入椭圆&#xff0c;先选中矩形&#xff0c;再选中椭圆&#xff0c;点击绘图工具&#xff0c;选择相交即可&#xff08;关键&#xff09;

Django(二、静态文件的配置、链接数据库MySQL)

文章目录 一、静态文件及相关配置1.以登录功能为例2.静态文件3.资源访问4.静态文件资源访问如何解决&#xff1f; 二、静态文件相关配置1. 如何配置静态文件配置&#xff1f;2.接口前缀3. 接口前缀动态匹配4. form表单请求方法补充form表单要注意的点 三、request对象方法reque…

4.移位计算,乘除法运算

目录 一. 移位计算 &#xff08;1&#xff09;算数移位 &#xff08;2&#xff09;逻辑移位 &#xff08;3&#xff09;循环移位 二. 乘法运算 &#xff08;1&#xff09;原码的乘法运算 &#xff08;2&#xff09;补码的乘法运算 三. 除法运算 &#xff08;1&#xf…

[HCTF 2018]WarmUp全网最详细解释

查看源码找到提示 访问source.php 代码审计&#xff1a; class emmm{public static function checkFile(&$page){$whitelist ["source">"source.php","hint">"hint.php"]; 定义了一个名为emmm的类&#xff0c;在该类中有…

线性代数(四)| 解方程 齐次性 非齐次性 扩充问题

文章目录 1 方程解的个数2 解方程步骤2.1 齐次性方程组2.2 非齐次方程组 3 一些扩充问题 系数矩阵 增广矩阵 A m n X B A_{mn}XB Amn​XB 1 方程解的个数 m 代表有m个方程 n代表有n个未知数 系数矩阵的秩与增广矩阵的秩不同 无解 若相同 &#xff0c;如系数矩阵的秩和未知…

Leetcode—226.翻转二叉树【简单】

2023每日刷题&#xff08;二十四&#xff09; Leetcode—226.翻转二叉树 实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* …

MySQL中表格的自我复制,与复制表格

先创建一个空表&#xff0c;my_tab01 CREATE TABLE my_tab01(id INT ,name VARCHAR(32),sal DOUBLE,job VARCHAR(32),deptno INT); SELECT * FROM my_tab01;准备一张有数据的表格&#xff1a; 将另一张表格的数据插入到my_tab01的表格中&#xff1a; -- 演示如何自我复制 --…

Android Glide transform旋转rotate圆图CircleCrop,Kotlin

Android Glide transform旋转rotate圆图CircleCrop&#xff0c;Kotlin import android.graphics.Bitmap import android.os.Bundle import android.util.Log import android.widget.ImageView import androidx.appcompat.app.AppCompatActivity import com.bumptech.glide.load…

在现实生活中传感器GV-H130/GV-21的使用

今天&#xff0c;收获了传感器GV-H130/GV-21&#xff0c;调试探头的用法&#xff0c;下面就来看看吧&#xff01;如有不妥欢迎指正&#xff01;&#xff01;&#xff01;&#xff01; 目录 传感器GV-H130/GV-21外观 传感器调试探头 探头与必要准备工作 传感器数值更改调试 …

MySQL的表格去重,史上最简便的算法,一看就会

首先&#xff0c;表格my_tab02存在很多重复的数据&#xff1a; #表格的去重 方法一&#xff1a; 详细内容传送门&#xff1a;表格的去重 -- 思路&#xff1a; -- 1.先创建一张临时表 my_tmp,该表的结构和my_tab02一样 -- 2.把my_tmp的记录通过distinct关键字 处理后 把记录复…

docker.service配置docker镜像加速

加速器配置方法很多&#xff0c;小白我用的是docker.service文件&#xff0c;所以直接在里面配置啊 配置以后&#xff0c;要systemctl daemon-reload下 &#xff0c;然后docker info 下看下镜像地址是否是自己已配置的 docker run --privilegedtrue --name mytomcat -p 8080…

【线上问题】服务器关机导致docker启动的mysql数据库消失了

目录 一、问题描述二、解决方式 一、问题描述 1. 服务器迁移断电导致docker启动的mysql数据库没有了数据 2. data目录是空的 3. mysql重启数据库消失了 二、解决方式 1. sudo -i切换root账号 2. 查找mysql的容器卷 find /var/lib/docker/volumes/ -name mysql3. 进入各个_dat…

文生图模型评测之PickScore

文章目录 1. 简介2. 构建数据集2.1 Pick-a-Pic web App2.2 Pick-a-Pic Dataset3. PickScore3.1.1模型结构和损失函数3.2 模型训练3.3 验证模型4. 作用4.1 作为验证模型的验证集4.2 用于模型选择5. 小结论文链接:Pick-a-Pic: An Open Dataset of User Preferences for Text-to-…

【halcon】halcon 函数文件 以及 脚本引擎如何调用外部函数文件 上篇

前言 halcon有几种文件&#xff1a; 本地程序函数&#xff08;.hdev&#xff09;外部函数文件&#xff08;.hdvp)库函数(.hdp) 说多了容易混淆&#xff0c;今天就说&#xff0c;我觉得最有用的&#xff1a;外部函数文件&#xff08;.hdvp) 步骤 先写一段halcon脚本&#x…

兴达易控232转profinet在搅拌站使用案例配置案例

该搅拌站所采用的是双行星动力搅拌桨混合机&#xff0c;借助兴达易控232转profinet网关(XD-PNR200)与PLC和变频器进行通信&#xff0c;从而实现对变频器的精确控制&#xff0c;大大提升了搅拌过程的稳定性和效率。 这一方案还具备高度的灵活性和可扩展性&#xff0c;使得搅拌站…