前言:
本专栏参考教材为《SPSS22.0从入门到精通》,由于软件版本原因,部分内容有所改变,为适应软件版本的变化,特此创作此专栏便于大家学习。本专栏使用软件为:SPSS25.0
本专栏所有的数据文件请点击此链接下载:SPSS数据分析专栏附件!
目录
1.线性回归
2.SPSS实现
3.结果分析
1.线性回归
线性回归是一种广泛应用的统计学方法,用于探索自变量(或称特征)与因变量之间的关系。它假设自变量与因变量之间存在线性关系,通过拟合最佳的直线来描述这种关系。在实际应用中,线性回归常被用于预测、建模和发现变量之间的关联性。常见的线性回归模型包括简单线性回归(只有一个自变量)和多元线性回归(包含多个自变量)。
在进行线性回归分析时,主要任务包括拟合最佳的线性模型、评估模型的拟合优度以及利用模型进行预测和推断。常见的评价指标包括R平方、均方误差等,用于评估模型对观测数据的拟合程度以及预测的准确性。
2.SPSS实现
(1)打开“data09-01”数据文件,选择“分析”——“回归”——“线性”,弹出下图所示的对话框。
(2)按照下图将左侧对应变量选到右边,并在方法中选择“步进”。
(3) 单击“统计”按钮,弹出“线性回归:统计”对话框,按照下图设置对应选项,然后单击继续返回主对话框。
(4) 单击“绘图”按钮,弹出“线性回归:图”对话框,按照下图选项进行设置,然后单击继续返回主对话框。
(5)单击“保存”按钮,弹出“线性回归:图”对话框,按照下图勾选对应选项,然后单击继续返回主对话框。
(6)单击“选项”按钮, 弹出下图所示的对话框,选项按照系统默认,然后单击继续返回主对话框。
(7)完成所以设置后,单击确定。
3.结果分析