学习笔记|Pearson皮尔逊相关系数|Spearman斯皮尔曼相关系数|和Kendall肯德尔tau-b相关系数|分析流程|-SPSS中双变量相关性分析系数

news2024/11/25 16:01:45

目录

  • 学习目的
  • 软件版本
  • 原始文档
  • 基础概念
    • 皮尔逊相关系数
      • 基本假设(适用条件):
      • 系数的范围及意义
      • 实例
        • 1. 读数据:
        • 2.正态性检验:
        • 3.异常值检验(体重):
        • 4.分析:
    • 斯皮尔曼相关系数
      • 基本假设(适用条件):
    • 肯德尔tau-b相关系数
      • 基本假设(适用条件):
  • 相关性系数的比较
    • 皮尔森相关与Spearman和Kendall相关
    • Spearman相关与Kendall相关

学习目的

SPSS中双变量相关性分析系数

软件版本

IBM SPSS Statistics 26。

原始文档

三个相关系数的注意事项
Pearson/Spearman/Kendallta三大相关系数怎么选?怎么计算?
《小白爱上SPSS》课程第18讲数据
Statistical functions (scipy.stats)包-scipy.stats.pearsonr
Statistical functions (scipy.stats)包-scipy.stats.spearmanr
Statistical functions (scipy.stats)包-scipy.stats.kendalltau
百度百科:spearman相关系数
相关性检验-Kendall’s Tau-b相关系数
Pearson’s Correlation 皮尔逊相关性分析详细操作

基础概念

皮尔逊相关系数

Pearson相关系数是传统的统计分析工具,应用广泛。Pearson相关系数公式:
在这里插入图片描述
但其有明显的理论局限,即只能度量线性的相关性,隐含地做了高斯性假设(正态分布、独立性假、方差齐性),使其无法在非线性和非高斯的情况下应用。

基本假设(适用条件):

每个观察值应具有一对值。比较的两个变量必须来源于同一个总体。
每个变量应该是连续的。
每个变量应为正态分布。
应该没有异常值。

系数的范围及意义

皮尔逊相关系数的范围是位于[-1,1]之间。相关系数展示了方向性:
如果相关系数接近1,说明两个变量之间呈较高的正相关性;
如果相关系数接近-1,说明两个变量之间呈较高的负相关性;
如果相关系数接近0,说明两个变量之间彼此独立,没有相关性。

实例

1. 读数据:
GET 
  FILE='E:\E盘备份\recent\小白爱上SPSS\小白数据\第十八讲:线性相关分析.sav'. 
2.正态性检验:
EXAMINE VARIABLES=体重 肺活量
  /PLOT HISTOGRAM NPPLOT /*若无此行,则不输出正态性检验表*/
  /COMPARE GROUPS 
  /STATISTICS DESCRIPTIVES 
  /CINTERVAL 95 
  /MISSING LISTWISE 
  /NOTOTAL.

在这里插入图片描述

在这里插入图片描述
经S-W(夏皮洛-威尔克)检验,体重、肺活量数据的p值分别为0.490和0.465,均大于0.05,无统计学意义,支持原假设,可认为两组数据符合正态分布。

3.异常值检验(体重):
USE ALL. 
COMPUTE filter_$=(体重 <= (49.308+3*5.3245)  &  体重 >= (49.308-3*5.3245)). 
VARIABLE LABELS filter_$ '体重 <= (49.308+3*5.3245)  &  体重 >= (49.308-3*5.3245) (FILTER)'. 
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMATS filter_$ (f1.0). 
FILTER BY filter_$. 
EXECUTE.

无异常值:
在这里插入图片描述
异常值检验(肺活量):

USE ALL. 
COMPUTE filter_$=(肺活量 <= (2.9342+3*.43383)  &  肺活量 >= (2.9342-3*.43383)). 
VARIABLE LABELS filter_$ '肺活量 <= (2.9342+3*.43383)  &  肺活量 >= (2.9342-3*.43383) (FILTER)'. 
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'. 
FORMATS filter_$ (f1.0). 
FILTER BY filter_$. 
EXECUTE.

无异常值:
在这里插入图片描述

4.分析:
CORRELATIONS 
  /VARIABLES=体重 肺活量 
  /PRINT=TWOTAIL NOSIG  /*显著性检验:双尾*/
  /STATISTICS DESCRIPTIVES /*选项中选定:平均值、标准偏差*/
  /MISSING=PAIRWISE	 /*皮尔逊*/.

在这里插入图片描述
皮尔逊相关性分析结果显示,P值显著性为0.001。P值小于0.05,说明示例的两个变量相关。相关性系数为0.828,离1比较近,也说明呈较高的正相关性。

斯皮尔曼相关系数

斯皮尔曼相关系数被定义成等级变量之间的皮尔逊相关系数。
对于样本容量为n的样本,n个原始数据被转换成等级数据,相关系数ρ为:
在这里插入图片描述
斯皮尔曼相关系数表明X(独立变量)和Y(依赖变量)的相关方向。如果当X增加时,Y趋向于增加,斯皮尔曼相关系数则为正。如果当X增加时,Y趋向于减少,斯皮尔曼相关系数则为负。斯皮尔曼相关系数为零表明当X增加时Y没有任何趋向性。当X和Y越来越接近完全的单调相关时,斯皮尔曼相关系数会在绝对值上增加。当X和Y完全单调相关时,斯皮尔曼相关系数的绝对值为1。完全的单调递增关系意味着任意两对数据Xi,Yi和Xj,Yj,有Xi−Xj和Yi−Yj总是同号。完全的单调递减关系意味着任意两对数据Xi,Yi和Xj,Yj,有Xi−Xj和Yi−Yj总是异号。
斯皮尔曼相关系数经常被称作"非参数"的。这里有两层含义。首先,当X和Y的关系是由任意单调函数描述的,则它们是完全皮尔逊相关的。与此相应的,皮尔逊相关系数只能给出由线性方程描述的X和Y的相关性。其次,斯皮尔曼不需要先验知识(也就是说,知道其参数)便可以准确获取XandY的采样概率分布。

基本假设(适用条件):

两对数据的观察是独立的。
应按序数,区间或比率测量两个变量。
假定两个变量之间存在单调关系。
皮尔逊Pearson相关系数使用前提条件中,任何一个条件不满足时可以考虑使用该系数;
Spearman与Pearson相关系数计算很类似,只是Spearman计算需要将两个变量转化为序数。

肯德尔tau-b相关系数

Kendall’s Tau相关系数,是由英国统计学家Maurice Kendall于1938年提出,主要包括Somers’ D、Goodman-kruskal’s gamma(γ)、Kendall’s Tau(a、b、c)等一系列相关系数。其中,最常用的是Kendall’s Tau-b和Kendall’s Tau-c相关系数。Kendall’s Tau相关系数适用于判断两列离散有序型数据之间的相关性,本文主要讲解Kendall’s Tau-b相关系数的计算。
在这里插入图片描述

基本假设(适用条件):

假设同spearman。但适应条件和前两者比完全不一样,衡量有序分类型数据的序数相关性。

相关性系数的比较

皮尔森相关与Spearman和Kendall相关

非参数相关(指 spearman和hendall)的表达能力相对较弱,因为它们在计算中使用的信息较少。在Pearson的情况下,相关性使用有关均值和均值偏差的信息,而非参数相关性仅使用序数信息和成对分数。
在非参数相关的情况下,X和Y值可能是连续的或有序的,并且不需要X和Y的近似正态分布。但在皮尔逊相关的情况下,它假定X和Y的分布应该是正态分布,并且也应该是连续的(因此做spearman之前要做一些对数变换之类的尽量接近正态分布)。
相关系数 测量线性(皮尔逊)或单调(Spearman和Kendall)关系。

Spearman相关与Kendall相关

在正常情况下,Kendall相关性比Spearman相关性更强健和有效。这意味着当样本量较小或存在一些异常值时,首选Kendall相关。
在所有情况下,Kendall相关系数的绝对值均小于其他绝对值。 可以看出,肯德尔相关性比其他相关性更为保守。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1186676.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

内网可达网段探测netspy- Mac环境

netspy是一款快速探测内网可达网段工具 当我们进入内网后想要扩大战果&#xff0c;那我们可能首先想知道当前主机能通哪些内网段。 netspy正是一款应用而生的小工具&#xff0c;体积较小&#xff0c;速度极快&#xff0c;支持跨平台&#xff0c;支持多种协议探测&#xff0c;…

STM32外部中断大问题

问题&#xff1a;一直进入中断&#xff0c;没有触发信号&#xff0c;也一直进入。 描述&#xff1a;开PA0为外部中断&#xff0c;刚刚很好&#xff0c;一个触发信号一个中断&#xff0c;中断函数没有丢&#xff0c;也没有抢跑&#xff0c;开PA1为外部中断也是&#xff0c;都很好…

基于CSP的运动想象 EEG 特征提取和可视化

基于运动想象的公开数据集&#xff1a;Data set IVa (BCI Competition III)1 数据描述参考前文&#xff1a;https://blog.csdn.net/qq_43811536/article/details/134224005?spm1001.2014.3001.5501 EEG 信号时频空域分析参考前文&#xff1a;https://blog.csdn.net/qq_4381153…

十月份 NFT 市场显示复苏迹象,等待进一步的积极发展

作者: stellafootprint.network 10 月份&#xff0c;比特币价格大幅飙升&#xff0c;NFT 市场出现了复苏迹象&#xff0c;月度交易量和用户数均增长了 15.2%。尽管 10 月份的数据相比 9 月份有所改善&#xff0c;但仍然不及 8 月份和之前几个月的水平。因此&#xff0c;现在断…

Cesium 笛卡尔坐标转换

Cesium中主要使用笛卡尔坐标系&#xff0c;球心相当于原点 z轴不是高度&#xff0c;高度是点到地表的距离&#xff0c;贴在表面高度就为0&#xff0c;z改变&#xff0c;x,y都会随之改变&#xff1b; 1.经纬度转笛卡尔 // (经度 纬度 高度)&#xff0c;返回的是一个笛卡尔坐标 c…

预约按摩app小程序开发搭建;

预约按摩app小程序开发搭建&#xff1b; 后端&#xff1a;系统后端使用PHP语言开发 前端&#xff1a;前端使用uniapp进行前后端分离开发&#xff0c;支持&#xff08;公中号、小程序、APP&#xff09;。 用户端功能模块&#xff1a;技师选择、预约服务、优惠券、订单、技师服…

事件绑定-回调函数

1.事件的概念 2.小程序常用的事件集 2.1 bindtap 点击回调事件方法 2.1.1语法格式 2.1.2 事件处理中调用data 使用setDatacount&#xff1a;这种方式 直接使用this.data.count 2.1.3 事件处理中传参 错误示范&#xff1a; 传递方式&#xff1a;数值用{{}}&#xff0c;直接引…

如何使用 GTX750 或 1050 显卡安装 CUDA11+

前言 由于兼容性问题&#xff0c;使得我们若想用较新版本的 PyTorch&#xff0c;通过 GPU 方式训练模型&#xff0c;也得更换较新版本得 CUDA 工具包。然而 CUDA 的版本又与电脑显卡的驱动程序版本关联&#xff0c;如果是低版本的显卡驱动程序安装 CUDA11 及以上肯定会失败。 比…

react之Component存在的2个问题

问题 只要执行setState()&#xff0c;即使不改变状态数据&#xff0c;组件也会重新render()只当前组件重新render()&#xff0c;就会自动重新render子组件 原因 Component中的shouldComponentUpdate()总是返回true 思路 只有当组件的state或props数据发生改变时才重新rend…

c++ 信奥赛编程 2050:【例5.20】字串包含

#include<iostream> #include<cstring> using namespace std; int main() {string str1,str2;int temp;cin>>str1>>str2;//判断长度 if(str1.size()<str2.size()){ swap(str1,str2); //交换内容 }str1str1str1; //AABCDAABCDAABCDAABCDif(str…

苹果转移供应链,促中国手机和中国制造更紧密合作,加速技术升级

随着苹果力推富士康等奔赴印度和越南设厂&#xff0c;引发的另一大反应恐怕是它所没有想到的&#xff0c;那就是中国手机和中国制造产业链的合作更加紧密了&#xff0c;中国制造产业链的技术水平反而因此得到提升。 一、产业链技术升级依赖苹果 对于制造产业链来说&#xff0c;…

12、填写NGINX配置部署前端;运行jar部署后端

后端可以部署的方式&#xff0c;首先直接运行jar是肯定可以的。此外&#xff0c;可以单独开docker容器运行在容器中。 但是这里运行在容器中必要性&#xff0c;其实并不大。 当前我们直接运行jar来运行后端。后面推出集成docker。 直接运行jar包的方式&#xff0c;首先需要打…

nginx下载安装和日志切割

目录 一、nginx安装配置 1.nginx版本 2.nginx安装配置 3.查看安装后的nginx 4.配置PATH变量 二、日志切割 1.给当前日志文件重命名 2.等待 3.写bash脚本 4.查看日志结果 5.加入crontab定时任务 结语 一、nginx安装配置 1.nginx版本 nginx如今分为商业版&#xff0…

京东API接口的应用场景:商品信息查询,商品详情获取

京东API接口的应用场景涵盖了电商业务的各个方面&#xff0c;通过API的方式&#xff0c;开发者可以方便地获取京东平台上的商品信息、用户信息、订单信息等&#xff0c;进而进行个性化的应用开发。以下是几个典型的应用场景&#xff1a; 商品信息查询&#xff1a;通过京东API接…

高性能网络编程 - The C10K problem 以及 网络编程技术角度的解决思路

文章目录 C10KC10K的由来C10K问题在技术层面的典型体现C10K问题的本质C10K解决思路思路一&#xff1a;每个进程/线程处理一个连接思路二&#xff1a;每个进程/线程同时处理多个连接&#xff08;IO多路复用&#xff09;● 实现方式1&#xff1a;直接循环处理多个连接● 实现方式…

启动Hbase出现报错

报错信息&#xff1a;slave1:head: cannot open/usr/local/hbase-2.3.1/bin/../logs/hbasewanggiqi-regionserver-slavel.out’ for reading: No such file or direslave2: head: cannot open/usr/local/hbase-2.3.1/bin/../logs/hbasewangqiqi-regionserver-slave2.out’ for …

OpenCV 图像复制和图像区域读写

图像复制 共享数据, 使用 new Mat(srcMat, ...) 和 newMatsrcMat 生成新的Mat都和原Mat共享数据, 也就是说如果修改某一Mat,其他Mat也会随之改变复制全新的Mat, 使用CopyTo() 和 Clone() 方法将生成一个全新的Mat, 新Mat和原Mat不共享数据. 图像区域和点的读写 区域读取: 通过s…

JavaEE初阶学习:Linux 基本使用和 web 程序部署

1.Linux的基本认识 Linux 是一个操作系统.(搞管理的系统) 和Windows都是同类产品~~ Linux 实际的场景: 1.服务器 2.嵌入式设备 3.移动端(手机)Android 其实就是Linux 1991年,还在读大学的 芬兰人 Linus Benedict Torvalds,搞了一个Linux 这样的系统0.01版,正式发布了~ 后…

[量化投资-学习笔记007]Python+TDengine从零开始搭建量化分析平台-布林带

布林带&#xff08;Bollinger Bands&#xff09;也称为布林通道、保力加通道&#xff0c;是由约翰布林格&#xff08;John Bollinger&#xff09;发明的技术分析指标。布林通道通常被用来确认资产价格波动范围。 布林通道是由三条平滑的曲线组成的趋势线图表&#xff0c;中线为…

HDPE双壁波纹管存在缺点,在选择使用时需要根据实际情况进行考虑

惠洁友情提醒HDPE双壁波纹管脆性较大&#xff1a;HDPE双壁波纹管的脆性较大&#xff0c;容易受到冲击和碰撞的影响&#xff0c;如果使用过程中出现破损或裂缝&#xff0c;可能会影响到其密封性能和使用寿命。 对温度敏感&#xff1a;HDPE双壁波纹管的性能受温度影响较大&#…