[NLP] 使用Llama.cpp和LangChain在CPU上使用大模型

news2024/12/23 19:34:32

一 准备工作

下面是构建这个应用程序时将使用的软件工具:

1.Llama-cpp-python

 下载llama-cpp, llama-cpp-python

[NLP] Llama2模型运行在Mac机器-CSDN博客

2、LangChain

LangChain是一个提供了一组广泛的集成和数据连接器,允许我们链接和编排不同的模块。可以常见聊天机器人、数据分析和文档问答等应用。

3、sentence-transformer

sentence-transformer提供了简单的方法来计算句子、文本和图像的嵌入。它能够计算100多种语言的嵌入。我们将在这个项目中使用开源的all-MiniLM-L6-v2模型。

4、FAISS

Facebook AI相似度搜索(FAISS)是一个为高效相似度搜索和密集向量聚类而设计的库。

给定一组嵌入,我们可以使用FAISS对它们进行索引,然后利用其强大的语义搜索算法在索引中搜索最相似的向量。

虽然它不是传统意义上的成熟的向量存储(如数据库管理系统),但它以一种优化的方式处理向量的存储,以实现有效的最近邻搜索。

二 LLM应用架构:以文档Q&A为例

假设我们想基于自己部署的Llama2模型,构建一个用于回答针对特定文档内容提问的聊天机器人。文档的内容可能属于特定领域或者特定组织内的文档,因此不属于任何Llama2进行预训练和微调的数据集。一个直觉的做法是in-context-learning:将文档作为Prompt提供给模型,从而模型能够根据所提供的Context进行回答。直接将文档作为Context可能遇到的问题是:

  • 文档的长度超出了模型的Context长度限制,原版Llama2的Context长度为4096个Tokens。
  • 对于较长的Context,模型可能会Lost in the Middle,无法准确从Context中获取关键信息。

因此,我们希望在构建Prompt时,只输入与用户的问题最相关的文档内容。

以下是构建文档Q&A应用的常用架构:

  • 文档处理与存储:将原始文本进行分块 (Splitting),并使用语言模型对每块文本进行embedding,得到文本的向量表示,最后将文本向量存储在支持相似性搜索的向量数据库中。
  • 用户询问和Prompt构建:根据用户输入的询问,使用相似性搜索在向量数据库中提取出与询问最相关的一些文档分块,并将用户询问+文档一起构建Prompt,随后输入LLM并得到回答。

三 实际使用

LangChain

在上节中描述了以文档Q&A为例的LLM应用Pipeline架构。LangChain是构建该类大模型应用的框架,其提供了模块化组件(例如上文图中的Document loader, Text splitter, Vector storage)的抽象和实现,并支持集成第三方的实现(例如可以使用不同第三方提供的Vector Storage服务)。通过LangChain可以将大模型与自定义的数据源结合起来构建Pipeline。

https://github.com/langchain-ai/langchain​github.com/langchain-ai/langchain

构建步骤

我们已经了解了各种组件,接下来让逐步介绍如何构建文档问答应用程序。

由于已经有许多教程了,所以我们不会深入到复杂和一般的文档问答组件的细节(例如,文本分块,矢量存储设置)。在本文中,我们将把重点放在开源LLM和CPU推理方面。

使用llama-cpp-python启动llama2 api服务

python3 -m llama_cpp.server --model TheBloke--Chinese-Alpaca-2-7B-GGUF/chinese-alpaca-2-7b.Q4_K_M.gguf   --n_gpu_layers 1

INFO:     Started server process [63148]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://localhost:8000 (Press CTRL+C to quit)

使用LangChain调用本地部署的Llama2

下面的示例将使用LangChain的API调用本地部署的Llama2模型。

from langchain.chat_models import ChatOpenAI

chat_model = ChatOpenAI(openai_api_key = "EMPTY", openai_api_base = "http://localhost:8000/v1", max_tokens=256)
  • 由于本地部署的llama-cpp-python提供了类OpenAI的API,因此可以直接使用ChatOpenAI接口,这将调用/v1/chat/completions API。
  • 由于并没有使用真正的OpenAI API,因此open_ai_key可以任意提供。openai_pi_base为模型API的Base URL。max_tokens限制了模型回答的长度。
from langchain.chat_models import ChatOpenAI

chat_model = ChatOpenAI(openai_api_key = "EMPTY", openai_api_base = "http://localhost:8000/v1", max_tokens=256)

from langchain.schema import AIMessage, HumanMessage, SystemMessage

system_text = "You are a helpful assistant."
human_text1 = "What is the capital of France?"
assistant_text = "Paris."
human_text2 = "How about England?"

messages = [SystemMessage(content=system_text), 
            HumanMessage(content=human_text1), 
            AIMessage(content=assistant_text), 
            HumanMessage(content=human_text2)]

chat_model.predict_messages(messages)

这里将演示如何使用LangChain构建一个简单的文档Q&A应用Pipeline:

  • Document Loading + Text Splitting
  • Text Embeddings + Vector Storage
  • Text Retrieval  + Query LLM

1 数据加载与处理 Document Loading + Text Splitting

本实验使用llama.cpp的README.md作为我们需要进行询问的文档。LangChain提供了一系列不同格式文档的Loader,包括用于加载Markdown文档的UnstructuredMarkdownLoader:

UnstructuredMarkdownLoader默认会将文档中的不同Elements(各级标题,正文等)组合起来,去掉了#等字符。

RecursiveCharacterTextSplitter是对常见文本进行Split的推荐选择:

RecursiveCharacterTextSplitter递归地在文本中寻找能够进行分割的字符(默认为["\n\n", "\n", " ", ""])。这将尽可能地保留完整的段落,句子和单词。

  • chunk_size: 文本进行Split后每个分块的最大长度,所有分块将在这个限制以内
  • chunk_overlap: 前后分块overlap的长度,overlap是为了保持前后两个分块之间的语义连续性
  • length_function: 度量文本长度的方法
from langchain.document_loaders import UnstructuredMarkdownLoader

loader = UnstructuredMarkdownLoader("./README.md")
text = loader.load()


from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 2000,
    chunk_overlap  = 400,
    length_function = len,
    is_separator_regex = False
)
all_splits = text_splitter.split_documents(text)

2.矢量存储 Text Embeddings + Vector Storage

这一步的任务是:将文本分割成块,加载嵌入模型,然后通过FAISS 进行向量的存储

Vector Storage

这里以FAISS向量数据库作为示例, FAISS基于Facebook AI Similarity Search(Faiss)库 。

pip install faiss-cpu



from langchain.embeddings import HuggingFaceEmbeddings 
# Load embeddings model 
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', 
                                   model_kwargs={'device': 'cpu'}) 

from langchain.vectorstores import FAISS
vectorstore = FAISS.from_documents(all_splits, embeddings) 
vectorstore.save_local('vectorstore/db_faiss')

#question = "How to run the program in interactive mode?"
#docs = vectorstore.similarity_search(question, k=1)

运行上面的Python脚本后,向量存储将被生成并保存在名为'vectorstore/db_faiss'的本地目录中,并为语义搜索和检索做好准备。

3.文本检索与LLM查询 Text Retrieval  + Query LLM

from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA

chat_model = ChatOpenAI(openai_api_key = "EMPTY", openai_api_base = "http://localhost:8000/v1", max_tokens=256)

qa_chain = RetrievalQA.from_chain_type(chat_model, retriever=vectorstore.as_retriever(search_kwargs={"k": 1}))
qa_chain({"query": "How to run the program in interactive mode?"})

构造RetrievalQA需要提供一个LLM的实例,我们提供基于本地部署的Llama2构造的ChatOpenAI;还需要提供一个文本的Retriever,我们提供FAISS向量数据库作为一个Retriever,参数search_kwargs={"k":1}设置了Retriever提取的文档分块的数量,决定了最终Prompt包含的文档内容的数量,在这里我们设置为1。 向Chain中传入询问,即可得到LLM根据Retriever提取的文档做出的回答。

自定义RetrievalQA的Prompt:

from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate

template = """Use the following pieces of context to answer the question at the end. 
If you don't know the answer, just say that you don't know, don't try to make up an answer. 
Use three sentences maximum and keep the answer as concise as possible. 
Always say "thanks for asking!" at the end of the answer. 
{context}
Question: {question}
Helpful Answer:"""
QA_CHAIN_PROMPT = PromptTemplate.from_template(template)

qa_chain = RetrievalQA.from_chain_type(
    chat_model,
    retriever=vectorstore.as_retriever(search_kwargs={"k": 1}),
    chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}
)
qa_chain({"query": "What is --interactive option used for?"})

结论

本文介绍了如何在MacBook Pro本地环境使用llama.cpp部署ggml量化格式的Llama2语言模型,并演示如何使用LangChain简单构造了一个文档Q&A应用。

References

[1] https://github.com/ggerganov/llama.cpp

[2] QA over Documents | ️ Langchain

在MacBook Pro部署Llama2语言模型并基于LangChain构建LLM应用 - 知乎 (zhihu.com)

使用GGML和LangChain在CPU上运行量化的llama2 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1181970.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于卷积神经网络的步幅(stride)

认识步幅(stride) 卷积核从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动,我们将每次滑动的行数和列数称为步幅。 计算步幅 假设输入的形状n∗n,卷积核的形状为f∗f&#xff0…

域渗透06-协议(NTLM hash利用)

前言: 当我们获取到一台域内主机打算干什么,毫无疑问当然是拿域控,如果域控未发现漏洞应该怎么办,首先我们需要查看我们拿到主机的权限和在域中的组,如果本机权限够我们就需要利用工具抓取本机的hash,然后…

HCIE-CCE

1、创建集群 svc网络,10.247 pod网络,10.244 节点网络,192.168.66(master和node一致) 2、创建节点 上面集群选择了最新版本1.27,CCE从1.27版本开始不再支持docker容器引擎,仅支持containered&…

渗透实战靶机3wp

0x00 简介 目标IP:xxxx.95 测试IP:xxxx.96 测试环境:win10、kali等 测试时间:2021.7.23-2021.7.26 测试人员:ruanruan 0x01 信息收集 1、端口扫描 21,ftp,ProFTPD,1.3.3c22&a…

Oracle 安装及 Spring 使用 Oracle

参考内容: docker安装oracle数据库史上最全步骤(带图文) Mac下oracle数据库客户端 Docker安装Oracle docker能安装oracle吗 Batch script for add a auto-increased primary key for exist table with records Docker 安装 Oracle11g 注意&a…

基于单片机的甲醛检测器设计

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 技术交流认准下方 CSDN 官方提供的联系方式 文章目录 概要 一、设计的主要内容二、系统硬件设计三、软件设计4.1 程序结构流程图原理图 四、结论五、 文章目录 概要 本文将要提…

餐饮软件开发价格受到需求的影响!

随着科技的进步和互联网的普及,餐饮行业也逐渐实现了数字化转型,越来越多的餐厅开始引入餐饮软件来提升服务质量、提高效率、拓展销售渠道等。 而对于许多初创餐厅或餐饮企业来说,开发一款适合自己的餐饮软件的价格一直是他们关注的焦点&…

NtripShare Caster高精度定位CORS服务软件

NtripShare CORS是NtripShare GNSS系列软件中最早的软件系统,也是NtripShare名称的起源。 所谓GNSS CORS服务系统一般构成: 1)基准站网:由若干个分布合理的GNSS 基准站组成; 2)数据传输系统:…

基于springboot垃圾分类管理系统

基于springboot垃圾分类管理系统 摘要 垃圾分类管理系统是一个基于现代技术和数据管理方法的解决方案,旨在协助城市和社区更有效地管理垃圾分类。在这个系统中,Spring Boot框架充当了后端应用程序的构建工具,为其提供了高度灵活的特性。该系统…

运算符与运算表达式

运算符的结合性和优先级: 结合性: 所有的单目运算符、条件运算符、赋值运算符及扩展运算符,结合方向都是从右向左,其余运算符的结合方向是从左向右。 优先级: 初等运算符>单目运算符>算数运算符(…

卡牌游戏类型定制开发微信卡牌小程序游戏

卡牌类型的游戏开发具有一些独特的特点和挑战,以下是一些主要的特点: 卡牌设计和平衡:卡牌游戏的核心是卡牌设计和平衡。开发团队需要设计各种卡牌,确保它们在游戏中相互平衡,以便提供有趣的游戏体验。卡牌的特性、效…

UE5 新特性 Nanite 开启

啥也不说,只能说,真的牛,在自己的项目上,从10几20的帧数,直接彪到了70 适用场景: 大场景,三角面足够多 在Project Setting里面 将这几个勾未true 勾上这个,放入场景即可

小程序如何设置自取模式下的服务方式

设置自取模式下的服务方式是非常重要的,尤其是对于到店自取和到店堂食这两种不同的服务模式。下面我们就来介绍一下如何在小程序中设置这两种服务方式。 在小程序管理员后台->配送设置处,在服务方式处,设置自取情况下的服务方式。默认是&…

变量环境、变量提升和暂时性死区

JavaScript中的提升 在JavaScript中,“Hoisting”(提升)是一种特性,它将变量和函数的声明移动到作用域的顶部。这意味着可以在声明之前使用这些变量和函数,而不会报错。 当JavaScript代码执行时,会经过两个…

计算机网络基础知识1

1、tcp三次握手? SYN,标志位,用于建立TCP连接的握手过程中的标志位。 ACK,确认位,用于说明整个包是确认报文。 TCP/IP协议是传输层的一个面向连接提供可靠安全的传输协议。第一次握手有客户端发起,客户端向…

超详细的厦门旅游攻略!暑期旅游特种兵必备

随着暑期的旅游越来越火爆,许多旅行社纷纷向大家推荐了许多热门景点,其中厦门旅游是许多人暑假首选的地点,你知道这些宣传图片或旅游攻略是如何制作出来的吗? 今天为大家推荐一款能够快速制作出厦门旅游攻略的软件——boardmix博思…

MySQL(流量包)

MySQL和SQL的区别是什么?之间是什么关系? SQL(Structured Query Language)是用于管理和操作关系型数据库(RDBMS)的标准语言。SQL还可以用于这些RDBMS:MySQL、Oracle、Microsoft SQL Server、Pos…

Manopt使用

本文记录一些黎曼流型的优化工具箱的使用 入手 安装 https://www.manopt.org/tutorial.html#gettingstarted

Node.js |(六)express框架 | 尚硅谷2023版Node.js零基础视频教程

学习视频:尚硅谷2023版Node.js零基础视频教程,nodejs新手到高手 文章目录 📚express使用🐇初体验🐇express路由⭐️路由的使用⭐️获取请求参数⭐️获取路由参数 🐇express响应设置🐇express中间…

面试题:你在工作中发现最有意义的bug?

软件测试面试中被问的问题有时候会是形形色色的,不会局限在你会哪些测试设计技术?测试流程是怎么样的? 就比如你会遇到这种问题:工作中最有意义的bug? 是不是有点懵?面试官问这个题目可不是真的关心你提过…