推荐系统设计与实现 协同过滤推荐算法 计算机竞赛

news2024/10/1 7:35:25

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 推荐系统设计与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

简介

推荐系统,是当今互联网背后的无名英雄。

我们在某宝首页看见的商品,某条上读到的新闻,某度上的搜索列表,甚至在各种地方看见的广告,都有赖于推荐算法和系统.

本片文章讲述有哪些常用的推荐算法, 协同过滤推荐算法的原理, 以及如何使用协同过滤算法设计一个商品推荐系统.

常见推荐算法
协同过滤

协同过滤(Collaborative
Filtering)作为推荐算法中最经典的类型,包括在线的协同和离线的过滤两部分。所谓在线协同,就是通过在线数据找到用户可能喜欢的物品,而离线过滤,则是过滤掉一些不值得推荐的数据,比比如推荐值评分低的数据,或者虽然推荐值高但是用户已经购买的数据。

协同过滤的模型一般为m个物品,m个用户的数据,只有部分用户和部分数据之间是有评分数据的,其它部分评分是空白,此时我们要用已有的部分稀疏数据来预测那些空白的物品和数据之间的评分关系,找到最高评分的物品推荐给用户。

一般来说,协同过滤推荐分为三种类型。第一种是基于用户(user-based)的协同过滤,第二种是基于项目(item-
based)的协同过滤,第三种是基于模型(model based)的协同过滤。

基于用户的协同过滤的基本原理是,根据所有用户对物品或者信息的偏好,发现与当前用户口味和偏好相似的用户群,然后基于这些用户的历史偏好,为当前用户进行推荐。

在这里插入图片描述
假设用户A喜欢物品A、物品C,用户B喜欢物品B,用户C喜欢物品A、物品C和物品D。从这些用户的历史偏好中,我们可以看出用户A和用户C的偏好是类似的。同时我们可以看到用户C喜欢物品D,所以我们可以猜想用户A可能也喜欢物品D,因此可以把物品D推荐给用户A。

分解矩阵

这是一个非常优雅的推荐算法,因为当涉及到矩阵分解时,我们通常不会太多地去思考哪些项目将停留在所得到矩阵的列和行中。但是使用这个推荐引擎,我们清楚地看到,u是第i个用户的兴趣向量,v是第j个电影的参数向量。

在这里插入图片描述
所以我们可以用u和v的点积来估算x(第i个用户对第j个电影的评分)。我们用已知的分数构建这些向量,并使用它们来预测未知的得分。

例如,在矩阵分解之后,Ted的向量是(1.4; .8),商品A的向量是(1.4; .9),现在,我们可以通过计算(1.4; .8)和(1.4;
.9)的点积,来还原商品A-Ted的得分。结果,我们得到2.68分。

在这里插入图片描述

聚类

上面两种算法都极其简单,适用于小型系统。在这两种方法中,我们把推荐问题当做一个有监督机器学习任务来解决。

现在,该开始用无监督学习来解决问题了。

假设我们正在建立一个大型推荐系统,这时协同过滤和矩阵分解花费的时间更长了。第一个浮现在脑海里的解决之道,就是聚类。

业务开展之初,缺乏之前的用户数据,聚类将是最好的方法。

不过,聚类是一种比较弱的个性化推荐,因为这种方法的本质是识别用户组,并对这个组内的用户推荐相同的内容。

当我们有足够数据时,最好使用聚类作为第一步,来缩减协同过滤算法中相关邻居的选择范围。这个方法还能挺高复杂推荐系统的性能。

每个聚类都会根据其中用户的偏好,来分配一组典型的偏好。每个聚类中的用户,都会收到为这个聚类计算出的推荐内容。

深度学习

在过去的十年中,神经网络已经取得了巨大的飞跃。如今,神经网络已经得以广泛应用,并逐渐取代传统的机器学习方法。

接下来,我要介绍一下YouTube如何使用深度学习方法来做个性化推荐。

毫无疑问,由于体量庞大、动态库和各种观察不到的外部因素,为YouTube用户提供推荐内容是一项非常具有挑战性的任务。

根据《Deep Neural Networks for YouTube Recommendations》(
https://static.googleusercontent.com/media/research.google.com/ru//pubs/archive/45530.pdf
),YouTube的推荐系统算法由两个神经网络组成:一个用于候选生成,一个用于排序。如果你没时间仔细研究论文,可以看看我们下面给出的简短总结。

在这里插入图片描述
以用户的浏览历史为输入,候选生成网络可以显著减小可推荐的视频数量,从庞大的库中选出一组最相关的视频。这样生成的候选视频与用户的相关性最高,然后我们会对用户评分进行预测。

这个网络的目标,只是通过协同过滤提供更广泛的个性化。

在这里插入图片描述
进行到这一步,我们得到一组规模更小但相关性更高的内容。我们的目标是仔细分析这些候选内容,以便做出最佳的选择。

这个任务由排序网络完成。

所谓排序就是根据视频描述数据和用户行为信息,使用设计好的目标函数为每个视频打分,得分最高的视频会呈献给用户。
在这里插入图片描述
通过这两步,我们可以从非常庞大的视频库中选择视频,并面向用户进行有针对性的推荐。这个方法还能让我们把其他来源的内容也容纳进来。
在这里插入图片描述
推荐任务是一个极端的多类分类问题。这个预测问题的实质,是基于用户(U)和语境©,在给定的时间t精确地从库(V)中上百万的视频类(i)中,对特定的视频观看(Wt)情况进行分类。

协同过滤原理

使用基于物品的协同过滤,需要维护一个物品相似度矩阵;使用基于用户的协同过滤,需要维护一个用户相似度矩阵。
在这里插入图片描述
两用户之间的相似度的计算其实很简单,用户i与用户j的相似度 = (i、j都打开过的网页数)/根号(i打开过的网页数 *
j打开过的网页数)。这个计算与“基于物品的协同过滤”中的物品之间相似度的计算是类似的。

在这里插入图片描述

上面是一个用户相似度计算的案例。我们试着计算A和D之间的相似度。从“用户打开过的网页”可以看出,A和D都打开过的网页只有d,也就是1个。用户A打开过的网页数=3,用户D打开过的网页数=3。所以A和D的相似度=1/根号(3*3)。其他的计算也是类似的。

有了用户之间的相似度之后,就可以计算推荐度了。假设e是刚刚发布的文章,这时候用户B、C、D都浏览到e新闻的标题,其中C、D点击了,我们就可以计算A对e的兴趣度。

A对e的兴趣度=A与B的相似度 B对e的兴趣度 + A与C的相似度 C对e的兴趣度 + A与D的相似度*D对e的兴趣度。
因为我们这里用的不是评分制,而是考虑是否点击,那么D点击了e,D对e的兴趣度=1。

A对e的兴趣度 = 1/根号(6)*1 + 1/根号(6)*1 + 1/根号(9)*1

所以,比如100篇新的文章出来之后,对部分用户进行了曝光,然后就可以根据用户相似度,来预计其他用户对这篇文章的兴趣度,进而挑选这100篇中预计兴趣度最高的30篇曝光给这群用户。

系统设计
示例代码(py)



    from abc import ABCMeta, abstractmethod
    import numpy as np
    from collections import defaultdict


    class CF_base(metaclass=ABCMeta):
        def __init__(self, k=3):
            self.k = k
            self.n_user = None
            self.n_item = None
    
        @abstractmethod
        def init_param(self, data):
            pass
    
        @abstractmethod
        def cal_prediction(self, *args):
            pass
    
        @abstractmethod
        def cal_recommendation(self, user_id, data):
            pass
    
        def fit(self, data):
            # 计算所有用户的推荐物品
            self.init_param(data)
            all_users = []
            for i in range(self.n_user):
                all_users.append(self.cal_recommendation(i, data))
            return all_users


    class CF_knearest(CF_base):
        """
        基于物品的K近邻协同过滤推荐算法
        """
    
        def __init__(self, k, criterion='cosine'):
            super(CF_knearest, self).__init__(k)
            self.criterion = criterion
            self.simi_mat = None
            return
    
        def init_param(self, data):
            # 初始化参数
            self.n_user = data.shape[0]
            self.n_item = data.shape[1]
            self.simi_mat = self.cal_simi_mat(data)
            return
    
        def cal_similarity(self, i, j, data):
            # 计算物品i和物品j的相似度
            items = data[:, [i, j]]
            del_inds = np.where(items == 0)[0]
            items = np.delete(items, del_inds, axis=0)
            if items.size == 0:
                similarity = 0
            else:
                v1 = items[:, 0]
                v2 = items[:, 1]
                if self.criterion == 'cosine':
                    if np.std(v1) > 1e-3:  # 方差过大,表明用户间评价尺度差别大需要进行调整
                        v1 = v1 - v1.mean()
                    if np.std(v2) > 1e-3:
                        v2 = v2 - v2.mean()
                    similarity = (v1 @ v2) / np.linalg.norm(v1, 2) / np.linalg.norm(v2, 2)
                elif self.criterion == 'pearson':
                    similarity = np.corrcoef(v1, v2)[0, 1]
                else:
                    raise ValueError('the method is not supported now')
            return similarity
    
        def cal_simi_mat(self, data):
            # 计算物品间的相似度矩阵
            simi_mat = np.ones((self.n_item, self.n_item))
            for i in range(self.n_item):
                for j in range(i + 1, self.n_item):
                    simi_mat[i, j] = self.cal_similarity(i, j, data)
                    simi_mat[j, i] = simi_mat[i, j]
            return simi_mat
    
        def cal_prediction(self, user_row, item_ind):
            # 计算预推荐物品i对目标活跃用户u的吸引力
            purchase_item_inds = np.where(user_row > 0)[0]
            rates = user_row[purchase_item_inds]
            simi = self.simi_mat[item_ind][purchase_item_inds]
            return np.sum(rates * simi) / np.linalg.norm(simi, 1)
    
        def cal_recommendation(self, user_ind, data):
            # 计算目标用户的最具吸引力的k个物品list
            item_prediction = defaultdict(float)
            user_row = data[user_ind]
            un_purchase_item_inds = np.where(user_row == 0)[0]
            for item_ind in un_purchase_item_inds:
                item_prediction[item_ind] = self.cal_prediction(user_row, item_ind)
            res = sorted(item_prediction, key=item_prediction.get, reverse=True)
            return res[:self.k]

    class CF_svd(CF_base):
        """
        基于矩阵分解的协同过滤算法
        """
    
        def __init__(self, k=3, r=3):
            super(CF_svd, self).__init__(k)
            self.r = r  # 选取前k个奇异值
            self.uk = None  # 用户的隐因子向量
            self.vk = None  # 物品的隐因子向量
            return
    
        def init_param(self, data):
            # 初始化,预处理
            self.n_user = data.shape[0]
            self.n_item = data.shape[1]
            self.svd_simplify(data)
            return data
    
        def svd_simplify(self, data):
            # 奇异值分解以及简化
            u, s, v = np.linalg.svd(data)
            u, s, v = u[:, :self.r], s[:self.r], v[:self.r, :]  # 简化
            sk = np.diag(np.sqrt(s))  # r*r
            self.uk = u @ sk  # m*r
            self.vk = sk @ v  # r*n
            return
    
        def cal_prediction(self, user_ind, item_ind, user_row):
            rate_ave = np.mean(user_row)  # 用户已购物品的评价的平均值(未评价的评分为0)
            return rate_ave + self.uk[user_ind] @ self.vk[:, item_ind]  # 两个隐因子向量的内积加上平均值就是最终的预测分值
    
        def cal_recommendation(self, user_ind, data):
            # 计算目标用户的最具吸引力的k个物品list
            item_prediction = defaultdict(float)
            user_row = data[user_ind]
            un_purchase_item_inds = np.where(user_row == 0)[0]
            for item_ind in un_purchase_item_inds:
                item_prediction[item_ind] = self.cal_prediction(user_ind, item_ind, user_row)
            res = sorted(item_prediction, key=item_prediction.get, reverse=True)
            return res[:self.k]

    if __name__ == '__main__':
        # data = np.array([[4, 3, 0, 5, 0],
        #                  [4, 0, 4, 4, 0],
        #                  [4, 0, 5, 0, 3],
        #                  [2, 3, 0, 1, 0],
        #                  [0, 4, 2, 0, 5]])
        data = np.array([[3.5, 1.0, 0.0, 0.0, 0.0, 0.0],
                         [2.5, 3.5, 3.0, 3.5, 2.5, 3.0],
                         [3.0, 3.5, 1.5, 5.0, 3.0, 3.5],
                         [2.5, 3.5, 0.0, 3.5, 4.0, 0.0],
                         [3.5, 2.0, 4.5, 0.0, 3.5, 2.0],
                         [3.0, 4.0, 2.0, 3.0, 3.0, 2.0],
                         [4.5, 1.5, 3.0, 5.0, 3.5, 0.0]])
        # cf = CF_svd(k=1, r=3)
        cf = CF_knearest(k=1)
        print(cf.fit(data))


系统展示
系统界面

在这里插入图片描述

推荐效果

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1180673.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高效节省IT资源,WorkPlus让企业轻松实现业务场景的快速移动化

在企业的业务移动化进程中,维护iOS、安卓、桌面端不仅需要专业的技术支持,更需要投入大量的IT人力资源。然而,选择WorkPlus作为移动化解决方案,企业可以轻松省去iOS、安卓、桌面端工程师的维护成本,只需借助H5工程师的…

搅拌站排队叫号系统 | 混凝土智慧物流管理平台

思伟软件 智慧物流管理平台 混凝土 用砼行 在线下单。工地通过砼行小程序下单,搅拌站通过砼行APP接单。 智能调度。手机打卡,自动排队。大小车自动分列,拌台生产随时看。电子小票直达司机手机。自动收到砼行APP推送的电子小票与广播发车提…

C 数据类型

C 数据类型 在 C 语言中,数据类型指的是用于声明不同类型的变量或函数的一个广泛的系统。变量的类型决定了变量存储占用的空间,以及如何解释存储的位模式。 C 中的类型可分为以下几种: 序号类型与描述1基本数据类型 它们是算术类型&#x…

数字化转型:2023零售业的新机遇,亿发零售云系统释放无限可能

零售业的数字化转型不仅能够为顾客带来卓越的购物体验,同时也能为零售企业提供丰富的数据分析、销售预测和生产管理的机会。通过这些分析,企业能够更准确地了解市场需求和消费者的购买行为,进而制定更具针对性的营销策略,从而增强…

妙享中心升级,小米电脑管家 v1.0.0.489,非小米笔记本安装教程

前些天发现了一个人工智能学习网站,通俗易懂,风趣幽默,适合想要了解和入门的朋友:点击访问链接 十月底,小米新品发布会发布了新的年度旗舰,小米14和14 Pro,同时发布了最新的自研系统——小米澎湃…

如何在在线Excel文档中对数据进行统计

本次我们将用zOffice表格的公式与数据透视表分析样例(三个班级的学生成绩)。zOffice表格内置了大量和Excel相同的统计公式,可以进行各种常见的统计分析,如平均值、标准差、相关性等。同时,zOffice也有数据透视表功能&a…

Flutter 第三方 flutter_screenutil(屏幕适配)

一直觉得自己写的不是技术,而是情怀,一个个的教程是自己这一路走来的痕迹。靠专业技能的成功是最具可复制性的,希望我的这条路能让你们少走弯路,希望我能帮你们抹去知识的蒙尘,希望我能帮你们理清知识的脉络&#xff0…

深入浅出 JetPack Compose UI 自动更新原理

为什么需要学习 Compose 的底层原理? 我想学习底层原理的主要原因是我对 Jetpack Compose 是如何运作的非常感兴趣。相对于传统的 View 系统,JetPack Compose 写起来相当神奇。具体来说,Composable 函数不会有返回值;它会自动更新…

NVIDIA Jetson SOC 内存分配策略

CPU 是Host, GPU 是Device, 系统内存分配策略如下: 这段话的翻译如下: 集成的GPU会和CPU以及其他Tegra引擎共享DRAM(动态随机存储器),并且CPU可以通过将DRAM的内容移动到交换区域(SWAP area)或者相反来控制…

每个 .vue 文件最多可以包含一个顶层 <template> 块

问题: 回答: 实际解决方法: 上图将template的#header写到了上一行的el-table-column中就出发这个问题

直播带货小程序的前端开发技巧与工具

当下,直播带货小程序已经成为了一个备受欢迎的选择,因为它能够将传统直播和电子商务相结合,为用户提供更好的购物体验。本文将深入探讨直播带货小程序的前端开发技巧和工具,以帮助开发人员更好地构建这一类型的应用。 1.小程序基础…

【Orangepi Zero2 全志H616】驱动OLED屏应用-IIC协议、设备的映射(mmap)

一、OLED屏幕 二、Orangepi的IIC接口 三、wiringPi库示例代码 四、Source insight 初步分析wiringP源码OLED_DEMO 五、设备的映射 六、mmap函数 七、简单OLED屏幕开发及实现 一、OLED屏幕 二、Orangepi的IIC接口 1) 由 26pin 的原理图可知, Orange Pi Zero 2 可用…

深度学习(CNN+RNN)笔记2

文章目录 第五课:序列模型(Sequence Models)第一周:循环神经网络(Recurrent Neural Networks)【序列模型、语言模型序列生成、对新序列采样。RNN、GRU、LSTM、双向RNN、深度RNN】第二周:自然语言处理与词嵌入&#xff…

从受众吸引到客户:提高海外社媒转化率的10个技巧!

在当今数字化时代,社交媒体已经成为企业与海外市场互动的关键工具。然而,只有吸引了足够的受众并将他们转化为客户,社交媒体才能实现其真正的潜力。本文Nox聚星将给大家分享提高海外社交媒体的转化率的10个实用技巧,将潜在受众转化…

互联网医院|湖南互联网医院|解决医疗资源不足问题

随着科技的进步和互联网的普及,互联网医院作为一种新型的医疗模式,逐渐受到人们的关注和认可。本文将详细介绍互联网医院的功能和优势,帮助大家全面了解这种新型的医疗服务。 一、互联网医院的功能 1、在线问诊:互联网医院为患者…

[黑马程序员Pandas教程]——Pandas数据结构

目录: 学习目标认识Pandas中的数据结构和数据类型Series对象通过numpy.ndarray数组来创建通过list列表来创建使用字典或元组创建s对象在notebook中不写printSeries对象常用API布尔值列表获取Series对象中部分数据Series对象的运算DataFrame对象创建df对象DataFrame…

漏洞复现--用友NC accept.jsp任意文件上传

免责声明: 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

剑指JUC原理-14.ReentrantLock原理

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…

为什么免费证书的有效期为90天

关心SSL证书的朋友们最近可能发现,包括阿里云,亚洲诚信在内的SSL证书服务商,都已经陆续的把之前一年期的免费证书调整为90天有效期,之前的一年期证书价格从免费上涨到几十到几百元不等,这是为什么呢?为什么…

阿里云双十一活动经济型e实例2核2G3M带宽配置云服务器搭建网站教程参考

阿里云2023双十一推出的优惠活动“金秋云创季”,轻量应用服务器2核2G3M带宽只要87元1年,2核4G4M带宽只要165元1年。云服务ECS下的经济型e实例2核2G 3M固定带宽,价格只要99元/1年,新老用户都可购买,同时在2026年3月31日…