SpringCloud 微服务全栈体系(十二)

news2025/1/5 8:57:07

第十一章 分布式搜索引擎 elasticsearch

一、初识 elasticsearch

1. 了解 ES

1.1 elasticsearch 的作用
  • elasticsearch 是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

  • 例如:

    • 在 GitHub 搜索代码

    在这里插入图片描述

    • 在电商网站搜索商品

    在这里插入图片描述

    • 在谷歌搜索答案

    在这里插入图片描述

    • 在打车软件搜索附近的车
1.2 ELK 技术栈
  • elasticsearch 结合 kibana、Logstash、Beats,也就是 elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

在这里插入图片描述

  • 而 elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据。

在这里插入图片描述

1.3 elasticsearch 和 lucene
  • elasticsearch 底层是基于lucene来实现的。

  • Lucene是一个 Java 语言的搜索引擎类库,是 Apache 公司的顶级项目,由 DougCutting 于 1999 年研发。官网地址:https://lucene.apache.org/ 。

  • elasticsearch的发展历史:

    • 2004 年 Shay Banon 基于 Lucene 开发了 Compass
    • 2010 年 Shay Banon 重写了 Compass,取名为 Elasticsearch。

在这里插入图片描述

1.4 为什么不是其他搜索技术?
  • 目前比较知名的搜索引擎技术排名:

在这里插入图片描述

  • 虽然在早期,Apache Solr 是最主要的搜索引擎技术,但随着发展 elasticsearch 已经渐渐超越了 Solr,独占鳌头。
1.5 总结
  • 什么是 elasticsearch?

    • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
  • 什么是 elastic stack(ELK)?

    • 是以 elasticsearch 为核心的技术栈,包括 beats、Logstash、kibana、elasticsearch
  • 什么是 Lucene?

    • 是 Apache 的开源搜索引擎类库,提供了搜索引擎的核心 API

2. 倒排索引

  • 倒排索引的概念是基于 MySQL 这样的正向索引而言的。
2.1 正向索引
  • 那么什么是正向索引呢?例如给下表(tb_goods)中的 id 创建索引:

在这里插入图片描述

  • 如果是根据 id 查询,那么直接走索引,查询速度非常快。

  • 但如果是基于 title 做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是 title 符合"%手机%"

2)逐行获取数据,比如 id 为 1 的数据

3)判断数据中的 title 是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤 1

  • 逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

请添加图片描述

2.2 倒排索引
  • 倒排索引中有两个非常重要的概念:

    • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
    • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
  • 创建倒排索引是对正向索引的一种特殊处理,流程如下:

    • 将每一个文档的数据利用算法分词,得到一个个词条
    • 创建表,每行数据包括词条、词条所在文档 id、位置等信息
    • 因为词条唯一性,可以给词条创建索引,例如 hash 表结构索引
  • 如图:

在这里插入图片描述

  • 倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档 id:1、2、3。

4)拿着文档 id 到正向索引中查找具体文档。

  • 如图:

请添加图片描述

  • 虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档 id 都建立了索引,查询速度非常快!无需全表扫描。
2.3 正向和倒排
  • 那么为什么一个叫做正向索引,一个叫做倒排索引呢?

    • 正向索引是最传统的,根据 id 索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

    • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到包含词条的文档的 id,然后根据 id 获取文档。是根据词条找文档的过程

  • 是不是恰好反过来了?

  • 那么两者方式的优缺点是什么呢?

2.3.1 正向索引
  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
2.3.2 倒排索引
  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

3. es 的一些概念

  • elasticsearch 中有很多独有的概念,与 mysql 中略有差别,但也有相似之处。
3.1 文档和字段
  • elasticsearch 是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为 json 格式后存储在 elasticsearch 中:

在这里插入图片描述

  • 而 Json 文档中往往包含很多的字段(Field),类似于数据库中的列。
3.2 索引和映射
  • 索引(Index),就是相同类型的文档的集合。

  • 例如:

    • 所有用户文档,就可以组织在一起,称为用户的索引;
    • 所有商品的文档,可以组织在一起,称为商品的索引;
    • 所有订单的文档,可以组织在一起,称为订单的索引;

请添加图片描述

  • 因此,我们可以把索引当做是数据库中的表。

  • 数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

3.3 mysql 与 elasticsearch
  • 我们统一的把 mysql 与 elasticsearch 的概念做一下对比:
MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是 JSON 格式
ColumnField字段(Field),就是 JSON 文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL 是 elasticsearch 提供的 JSON 风格的请求语句,用来操作 elasticsearch,实现 CRUD
  • 是不是说,学习了 elasticsearch 就不再需要 mysql 了呢?

  • 并不是如此,两者各自有自己的擅长支出:

    • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

    • Elasticsearch:擅长海量数据的搜索、分析、计算

  • 因此在企业中,往往是两者结合使用:

    • 对安全性要求较高的写操作,使用 mysql 实现
    • 对查询性能要求较高的搜索需求,使用 elasticsearch 实现
    • 两者再基于某种方式,实现数据的同步,保证一致性

在这里插入图片描述

4. 安装 es、kibana

4.1 安装 es
4.1.1 部署单点 es
4.1.1.1 创建网络
  • 因为还需要部署 kibana 容器,因此需要让 es 和 kibana 容器互联。这里先创建一个网络:
docker network create es-net
4.1.1.2 加载镜像
  • 采用 elasticsearch 的 7.12.1 版本的镜像,这个镜像体积非常大,接近 1G。
  • 资料提供了镜像的 tar 包。
    见专栏 -> 全栈资料包 -> 资源包/02_cloud

在这里插入图片描述

  • 将其上传到虚拟机中,然后运行命令加载即可:
# 导入数据
docker load -i es.tar
  • 同理还有kibana的 tar 包也需要这样做。
4.1.1.3 运行
  • 运行 docker 命令,部署单点 es:
docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1
  • 命令解释:

    • -e "cluster.name=es-docker-cluster":设置集群名称
    • -e "http.host=0.0.0.0":监听的地址,可以外网访问
    • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
    • -e "discovery.type=single-node":非集群模式
    • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定 es 的数据目录
    • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定 es 的日志目录
    • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定 es 的插件目录
    • --privileged:授予逻辑卷访问权
    • --network es-net :加入一个名为 es-net 的网络中
    • -p 9200:9200:端口映射配置
  • 在浏览器中输入:http://192.168.150.101:9200 即可看到 elasticsearch 的响应结果:

在这里插入图片描述

4.1.2 部署 kibana
  • kibana 可以给我们提供一个 elasticsearch 的可视化界面。
4.1.2.1 部署
  • 运行 docker 命令,部署 kibana

    docker run -d \
    --name kibana \
    -e ELASTICSEARCH_HOSTS=http://es:9200 \
    --network=es-net \
    -p 5601:5601  \
    kibana:7.12.1
    
    • --network es-net :加入一个名为 es-net 的网络中,与 elasticsearch 在同一个网络中
    • -e ELASTICSEARCH_HOSTS=http://es:9200":设置 elasticsearch 的地址,因为 kibana 已经与 elasticsearch 在一个网络,因此可以用容器名直接访问 elasticsearch
    • -p 5601:5601:端口映射配置
  • kibana 启动一般比较慢,需要多等待一会,可以通过命令查看运行日志:

docker logs -f kibana
  • 此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
4.1.2.2 DevTools
  • kibana 中提供了一个 DevTools 界面
  • 这个界面中可以编写 DSL 来操作 elasticsearch。并且对 DSL 语句有自动补全功能。
4.2 安装分词器
4.2.1 在线安装 ik 插件(较慢)
# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch
4.2.2 离线安装 ik 插件(推荐)
4.2.2.1 查看数据卷目录
  • 安装插件需要知道 elasticsearch 的 plugins 目录位置,而我们用了数据卷挂载,因此需要查看 elasticsearch 的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
  • 显示结果:
[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]
  • 说明 plugins 目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。
4.2.2.2 解压缩分词器安装包
  • 把资料中的 ik 分词器解压缩,重命名为 ik
    见专栏 -> 全栈资料包 -> 资源包/02_cloud

在这里插入图片描述

4.2.2.3 上传到 es 容器的插件数据卷中
  • 也就是/var/lib/docker/volumes/es-plugins/_data
4.2.2.4 重启容器
# 重启容器
docker restart es
# 查看es日志
docker logs -f es
4.2.2.5 测试
  • IK 分词器包含两种模式:

    • ik_smart:最少切分

    • ik_max_word:最细切分

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小帽课堂学习java太棒了"
}
  • 结果
{
  "tokens" : [
    {
      "token" : "小帽",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "课堂",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 3
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 6
    }
  ]
}
4.2.3 扩展词词典
  • 随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给” 等。

  • 所以我们的词汇也需要不断的更新,IK 分词器提供了扩展词汇的功能。

4.2.3.1 打开 IK 分词器 config 目录

在这里插入图片描述

4.2.3.2 在 IKAnalyzer.cfg.xml 配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>
4.2.3.3 新建一个 ext.dic,可以参考 config 目录下复制一个配置文件进行修改
奥力给
4.2.3.4 重启 elasticsearch
docker restart es

# 查看 日志
docker logs -f elasticsearch
  • 日志中已经成功加载 ext.dic 配置文件
4.2.3.5 测试效果
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小帽学习Java,奥力给!"
}

注意:当前文件的编码必须是 UTF-8 格式,严禁使用 Windows 记事本编辑

4.2.4 停用词词典
  • 在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,那么我们在搜索时也应该忽略当前词汇。

  • IK 分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

4.2.4.1 IKAnalyzer.cfg.xml 配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>
4.2.4.2 在 stopword.dic 添加停用词
神经病
4.2.4.3 重启 elasticsearch
# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch
  • 日志中已经成功加载 stopword.dic 配置文件
4.2.4.4 测试效果
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小帽课堂学习Java,神经病都点赞,奥力给!"
}

注意:当前文件的编码必须是 UTF-8 格式,严禁使用 Windows 记事本编辑

4.3 部署 es 集群
  • 部署 es 集群可以直接使用 docker-compose 来完成,不过要求 Linux 虚拟机至少有4G的内存空间。
  • 首先编写一个 docker-compose 文件,内容如下:
version: '2.2'
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge
  • Run docker-compose to bring up the cluster:
docker-compose up
4.4 总结
  • 分词器的作用是什么?

    • 创建倒排索引时对文档分词
    • 用户搜索时,对输入的内容分词
  • IK 分词器有几种模式?

    • ik_smart:智能切分,粗粒度
    • ik_max_word:最细切分,细粒度
  • IK 分词器如何拓展词条?如何停用词条?

    • 利用 config 目录的 IkAnalyzer.cfg.xml 文件添加拓展词典和停用词典
    • 在词典中添加拓展词条或者停用词条

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1179738.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux Shell和权限

目录 Shell命令及运行原理 权限 1.文件基本属性 2.文件权限值的表示方法 3.文件访问权限的相关设置方法 3.(1)chmod 组名修改 3.(2)chmod 二进制修改 3.(3)chown 3.(4)chgrp 3.(5)umask 4.目录权限 Shell命令及运行原理 Linux的操作系统&#xff0c;狭义上是…

C++常用格式化输出转换

在C语言中可以用printf以一定的格式打印字符&#xff0c;C当然也可以。 输入输出及命名空间还不太了解的小伙伴可以看一看C入门讲解第一篇。  在C中&#xff0c;可以用流操作符&#xff08;stream manipulators&#xff09;控制数据的输出格式&#xff0c;这些流操作符定义在2…

提升家庭自动化级别:使用HomeAssistant添加HACS插件,实现对米家、HomeKit等智能家居设备的公网控制

提升家庭自动化级别&#xff1a;使用HomeAssistant添加HACS插件&#xff0c;实现对米家、HomeKit等智能家居设备的公网控制 文章目录 提升家庭自动化级别&#xff1a;使用HomeAssistant添加HACS插件&#xff0c;实现对米家、HomeKit等智能家居设备的公网控制基本条件一、下载HA…

游戏、电影、动画、电视广播还是现场娱乐,xsens都会随时随地为您提供准确的动作捕捉

MVN 动画释放你的创造力 无论是游戏、电影、动画、电视广播还是现场娱乐&#xff0c;MVN Animate都会随时随地为您提供准确的动作捕捉。其先进的惯性技术为您在工作室内外提供精准的生产数据&#xff01; 认识 MVN Animate 实时传输所有数据 MVN动画的专有动作捕捉软件可以直…

上海:竹云董事长董宁受邀在第三届“双区驱动,打造全球经济新引擎”国际合作论坛发言

作为中国最具活力的两大重要经济带&#xff0c;粤港澳和长三角两大湾区2022年GDP总量超过42万亿&#xff0c;占全国GDP总量的35%&#xff0c;对中国经济的重要性举足轻重。中国国际进口博览会是我国主动向世界开放市场的重大举措&#xff0c;是一个推动两地开放合作&#xff0c…

电脑自动重启是什么原因?教你快速定位问题

电脑是我们日常生活和工作中不可或缺的工具&#xff0c;但有时它们会出现问题&#xff0c;其中之一是自动重启。这种情况可能会影响您的工作效率和数据的安全。可是您知道电脑自动重启是什么原因吗&#xff1f;在本文中&#xff0c;我们将深入研究电脑自动重启的可能原因&#…

Spring IoCDI入门

一&#xff1a;Spring IoC&DI概念 (1)Spring概念 &#x1f497;Spring是包含了众多工具方法的IoC容器&#xff0c;是一个开源框架&#xff0c;让我们的开发更加简单 &#x1f31f;Spring的两大核心和特点&#xff1a;IoC和AOP (2)IoC的介绍 1.概念 &#x1f497;IoC: Inv…

【算法与数据结构】77、LeetCode组合

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;如果k是固定的&#xff0c;最直接的方法就是建立k个for循环&#xff0c;将结果全部压入result容器中。…

Verilog刷题[hdlbits] :Always if2

题目&#xff1a;Always if2 A common source of errors: How to avoid making latches 一个常见的错误来源:如何避免产生latches When designing circuits, you must think first in terms of circuits: 在设计电路时&#xff0c;必须首先考虑电路: I want this logic gate…

【Spring】c命名和p命名空间注入

p命名空间注入 导入p名称空间 xmlns:p"http://www.springframework.org/schema/p"直接输入p就会有相关的属性弹出 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xml…

若依分离版——定时调度

定时调度操作简单&#xff0c;只需在已有的service方法添加component&#xff0c;并在定时任务中添加任务即可。 一、在已有service类上加上Component("TestTask") Component("TestTask") //定时调度任务 public class SysTestServiceImpl implements …

学生用的台灯护眼的哪种比较好?专业的护眼台灯分享

对于学生而言&#xff0c;台灯是必不可少的一盏桌面照明灯具&#xff0c;尤其是在夜间不管是读书、写字还是使用观看电子屏幕&#xff0c;都需要一个光源稳定、柔和的台灯。而这些需要考虑到照度、色温、蓝光、频闪等参数&#xff0c;所以挑选一盏台灯时千万不能马虎&#xff0…

python 视频硬字幕去除 内嵌字幕去除工具 vsr

项目简介 开源地址&#xff1a;https://github.com/YaoFANGUK/video-subtitle-remover Video-subtitle-remover (VSR) 是一款基于AI技术&#xff0c;将视频中的硬字幕去除的软件。 主要实现了以下功能&#xff1a; 无损分辨率将视频中的硬字幕去除&#xff0c;生成去除字幕后…

AI:66-基于机器学习房价预测

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…

【代码扫描修复】不安全的反序列化攻击(高危)

目录 一、漏洞描述1.1 摘要&#xff1a;1.2 漏洞解释&#xff1a;1.3 修复建议 二、知识补充2.1 反序列化的历史2.2 什么是序列化、反序列化&#xff1f;补充&#xff1a;Java 对象序列化为二进制 2.3 序列化/反序列化库2.4 反序列化漏洞 三、漏洞复现&#xff1a;攻击链13.1 依…

jacoco和sonar

目录 jacoco 引入依赖 构建配置修改 单元测试 生成报告 查看报告 报告说明 1. Instructions 2. Branches 3. Cyclomatic Complexity 4. Lines 5. Methods 6. Classes sonar7.7 基础环境 需要下载软件 解压文件并配置 运行启动 jacoco 引入依赖 <dep…

CAP定理一文带你速解(通俗易懂,图文并茂)

目录 CAP定理 概述 Consistence&#xff08;一致性&#xff09; Availability &#xff08;可用性&#xff09; Partition Tolerance&#xff08;分区容错性&#xff09; 保证P&#xff0c;为什么无法同时满足AC&#xff1f; CP与AP如何取舍 CAP定理是分布式事务的基础…

Node.js |(五)包管理工具 | 尚硅谷2023版Node.js零基础视频教程

学习视频&#xff1a;尚硅谷2023版Node.js零基础视频教程&#xff0c;nodejs新手到高手 文章目录 &#x1f4da;概念介绍&#x1f4da;npm&#x1f407;安装npm&#x1f407;基本使用&#x1f407;生产依赖与开发依赖&#x1f407;npm全局安装&#x1f407;npm安装指定包和删除…

机器视觉工程师注意高新待遇来了,非标设备厂家早就布局海外市场,国内大多数企业是谋生存情况下,而更具有大局观的企业走出去则是谋发展

冬天来了&#xff0c;大家记得多添点衣服&#xff0c;记得穿秋裤&#xff01; 当各个厂家都在国内抢订单的时候&#xff0c;更多的非标设备厂家早已走向海外&#xff0c;布局海外市场&#xff0c;或者在新的领域积极开展新的业务。为自身公司带来大量海外订单。 别的企业都是…

Excel 转 Json 、Node.js实现(应用场景:i18n国际化)

创作灵感来源于在线转换是按照换行符去转换excel内容换行符后很难处理 本文是按单元格转换 const xlsx require(node-xlsx) const fs require(fs) const xlsxData xlsx.parse(./demo.xlsx) // 需要转换的excel文件// 数据处理 方便粘贴复制 const data xlsxData[2].data …