FPGA高端项目:图像缩放+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持

news2025/1/11 7:55:29

目录

  • 1、前言
    • 免责声明
    • 本项目特点
  • 2、相关方案推荐
    • 我这里已有的 GT 高速接口解决方案
    • 我这里已有的以太网方案
    • 我这里已有的图像处理方案
  • 3、设计思路框架
    • 设计框图
    • 视频源选择
    • ADV7611 解码芯片配置及采集
    • 动态彩条
    • 跨时钟FIFO
    • 图像缩放模块详解
      • 设计框图
      • 代码框图
      • 2种插值算法的整合与选择
    • GTP 全网最细解读
      • GTP 基本结构
      • GTP 发送和接收处理流程
      • GTP 的参考时钟
      • GTP 发送接口
      • GTP 接收接口
      • GTP IP核调用和使用
    • 数据对齐
    • 视频数据解包
    • 图像缓存
    • UDP数据组包
    • UDP协议栈
    • UDP协议栈数据发送
    • IP地址、端口号的修改
    • Tri Mode Ethernet MAC介绍以及移植注意事项
    • RTL8211
    • QT上位机和源码
  • 4、vivado工程1-->1路SFP传输
  • 5、vivado工程2-->2路SFP传输
  • 6、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 7、上板调试验证并演示
    • 准备工作
    • ping一下
    • 静态演示
    • 动态演示
  • 8、福利:工程源码获取

FPGA高端项目:图像缩放+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持

1、前言

没玩过图像处理、GT高速接口、UDP网络通信,都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。

本文使用Xilinx的Artix7 FPGA的GTP资源和板载的RTL8211网络PHY做GTP aurora 8b/10b编解码 UDP网络视频传输实验;视频源有两种,分别对应开发板有没有HDMI输入接口的情况;一种是使用开发板自带的HDMI输入接口,我的板子HDMI输入采用ADV7611芯片解码方案;如果你的开发板没有HDMI输入接口,或者你的开发板HDMI输入接口不是ADV7611芯片解码,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,上电默认使用HDMI输入作为视频源;FPGA采集到视频数据后,首先进行图像缩放,将输入分辨率为19201080的视频缩小为1280720,然后将视频数据进行数据组包,然后调用GTP IP核,配置为8b/10b编解码模式,将组包的视频数据送入GTP编码发送出去,然后再GTP解码接收,用verilog编写视频数据对齐和视频数据解包模块解析出有效的视频数据,并恢复行场等时序,然后将视频送到DDR3进行缓存,再读出视频送UDP协议栈进行UDP协议编码,再调用Xilinx官方的Tri Mode Ethernet MAC作为MAC层,最后通过板载的RTL8211将视频通过网络数据形式发送PC,PC端用QT上位机接收图像并显示出来;

提供2套vivado2019.1版本的工程源码;2套工程的区别在于使用1个SFP光口还是使用2个SFP光口,详情请看第3章节的设计思路框架;工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

本项目特点

本项目是一个综合性的高端项目,从宏观上可以分为硬件和软件的结合,硬件指的是FPGA逻辑的实现,软件指的是PC端QT上位机的实现;从FPGA应用领域上可以分为图像处理、高速接口、网络传输三大领域,这三大领域是目前FPGA的主流应用,图像处理属于基础应用,网络传输属于中等应用,高速接口属于高端应用;这个工程直接将三者结合,在实际应用中很有需求,但市面上会的人很少。。。

2、相关方案推荐

我这里已有的 GT 高速接口解决方案

我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往

我这里已有的以太网方案

目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,还有RDMA的NIC 10G 25G 100G网卡工程源码,对网络通信有需求的兄弟可以去看看:直接点击前往
其中10G万兆TCP协议的工程博客如下:
直接点击前往

我这里已有的图像处理方案

目前我这里已有的图像处理方案有很多,包括图像缩放、图像拼接、图像旋转、图像识别跟踪、图像去雾等等,所有工程均在自己的板子上跑通验证过,保证代码的可靠性,对图像处理感兴趣或有项目需求的兄弟可以参考我的图像处理专栏,里面包含了上述工程源码的详细设计方案和验证视频演示:直接点击前往

3、设计思路框架

本文使用Xilinx的Artix7 FPGA的GTP资源和板载的RTL8211网络PHY做GTP aurora 8b/10b编解码 UDP网络视频传输实验;视频源有两种,分别对应开发板有没有HDMI输入接口的情况;一种是使用开发板自带的HDMI输入接口,我的板子HDMI输入采用ADV7611芯片解码方案;如果你的开发板没有HDMI输入接口,或者你的开发板HDMI输入接口不是ADV7611芯片解码,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,上电默认使用HDMI输入作为视频源;FPGA采集到视频数据后,首先进行图像缩放,将输入分辨率为19201080的视频缩小为1280720,然后将视频数据进行数据组包,然后调用GTP IP核,配置为8b/10b编解码模式,将组包的视频数据送入GTP编码发送出去,然后再GTP解码接收,用verilog编写视频数据对齐和视频数据解包模块解析出有效的视频数据,并恢复行场等时序,然后将视频送到DDR3进行缓存,再读出视频送UDP协议栈进行UDP协议编码,再调用Xilinx官方的Tri Mode Ethernet MAC作为MAC层,最后通过板载的RTL8211将视频通过网络数据形式发送PC,PC端用QT上位机接收图像并显示出来;

设计框图

使用1个SFP光口框图如下:
在这里插入图片描述
注意:框图中的数字表示数据流向的顺序;
使用2个SFP光口框图如下:
在这里插入图片描述
注意:框图中的数字表示数据流向的顺序;

视频源选择

视频源有两种,分别对应开发板有没有HDMI输入接口的情况;一种是使用开发板自带的HDMI输入接口,我的板子HDMI输入采用IT6802芯片解码方案;如果你的开发板没有HDMI输入接口,或者你的开发板HDMI输入接口不是IT6802芯片解码,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,上电默认使用HDMI输入作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是HDMI输入;
当(不注释) define COLOR_IN时,输入源视频是动态彩条;

ADV7611 解码芯片配置及采集

ADV7611 解码芯片需要i2c配置才能使用,ADV7611 解码芯片配置及采集这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

跨时钟FIFO

跨时钟FIFO的作用是为了解决跨时钟域的问题,当视频不进行缩放时不存在视频跨时钟域问题,但当视频缩小或放大时就存在此问题,用FIFO缓冲可以使图像缩放模块每次读到的都是有效的输入数据,注意,原视频的输入时序在这里就已经被打乱了;

图像缩放模块详解

因为我们的QT上位机目前只支持1280x720,所以才需要缩放,即从输入的1920x1080分辨率缩小为1280x720;用笔记本电脑模拟HDMI视频输入源;

设计框图

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;代码以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
视频输入时序要求如下:
在这里插入图片描述
输入像素数据在dInValid和nextDin同时为高时方可改变;
视频输出时序要求如下:
在这里插入图片描述
输出像素数据在dOutValid 和nextdOut同时为高时才能输出;

代码框图

代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;
图像缩放的实现方式很多,最简单的莫过于Xilinx的HLS方式实现,用opencv的库,以c++语言几行代码即可完成,关于HLS实现图像缩放请参考我之前写的文章HLS实现图像缩放
网上也有其他图像缩放例程代码,但大多使用了IP,导致在其他FPGA器件上移植变得困难,通用性不好;相比之下,本设计代码就具有通用性;代码架构如图;
在这里插入图片描述
其中顶层接口部分如下:
在这里插入图片描述

2种插值算法的整合与选择

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

关于这两种算法的数学差异,请参考我之前写的文章HLS实现图像缩放

GTP 全网最细解读

关于GTP介绍最详细的肯定是Xilinx官方的《ug482_7Series_GTP_Transceivers》,我们以此来解读:
《ug482_7Series_GTP_Transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Xilinx Artix7 xc7a35tfgg484-2;带有4路GTP资源,每通道的收发速度为 500 Mb/s 到 6.6 Gb/s 之间。GTP 收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;

调用GTP做aurora 8b/10b协议的数据编解码,前面已经对GTP做了详细概述,这里不讲;代码位置如下:
在这里插入图片描述
需要注意的是,我一共调用了5个GTP,速率分别为1G、2G、4G、5G;代码中用一个参数选择速率,如下:
在这里插入图片描述
GTP_RATE=8’d1,GTP以1G线速率运行;
GTP_RATE=8’d2,GTP以2G线速率运行;
GTP_RATE=8’d4,GTP以4G线速率运行;
GTP_RATE=8’d5,GTP以5G线速率运行;
以我的测试来看,GTP以4G线速率运行时视频传输效果最佳;

GTP 基本结构

Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTP 收发器在Artix-7 FPGA 芯片中的示意图:《ug482_7Series_GTP_Transceivers》第13页;
在这里插入图片描述
GTP 的具体内部逻辑框图如下所示,它由四个收发器通道 GTPE2_CHANNEL原语 和一个GTPE2_COMMON 原语 组成。每路 GTPE2_CHANNEL 包含发送电路 TX 和接收电路 RX;《ug482_7Series_GTP_Transceivers》第14页;
在这里插入图片描述
每个 GTPE2_CHANNEL 的逻辑电路如下图所示:《ug482_7Series_GTP_Transceivers》第15页;
在这里插入图片描述
GTPE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;

GTP 发送和接收处理流程

首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。

GTP 的参考时钟

GTP 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTP模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 125Mhz 的 GTP 参考时钟连接到 MGTREFCLK0/1上,作为 GTP 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTPE2_COMMOM 的 PLL0 和 PLL1 中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTP 的参考时钟结构图如下:《ug482_7Series_GTP_Transceivers》第21页;
在这里插入图片描述

GTP 发送接口

《ug482_7Series_GTP_Transceivers》的第75到123页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述
用户只需要关心发送接口的时钟和数据即可,GTP例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTP 接收接口

《ug482_7Series_GTP_Transceivers》的第125到213页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;
在这里插入图片描述
用户只需要关心接收接口的时钟和数据即可,GTP例化模块的这部分接口如下:
在这里插入图片描述
在这里插入图片描述
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
在这里插入图片描述

GTP IP核调用和使用

在这里插入图片描述
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:
在这里插入图片描述
这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTP需要那么复杂么?
在这里插入图片描述
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTP的范围是0.5到6.25G,由于我的项目是视频传输,所以在GTP的速率范围内均可,为了通用性,我在vivado工程中例化了5个GTP,速率分别为1G、2G、4G、5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是125M;
4:GTP组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug482_7Series_GTP_Transceivers》,官方将GTP资源分成了4组,名字分别为X0Y0、X0Y1、X0Y2、X0Y3,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTP组和引脚是怎么对应的呢?《ug482_7Series_GTP_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;在这里插入图片描述
我的板子原理图如下:
在这里插入图片描述
在这里插入图片描述
选择外部数据位宽32bit的8b/10b编解码,如下:
在这里插入图片描述
下面这里讲的是K码检测:
在这里插入图片描述
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
在这里插入图片描述
下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;
在这里插入图片描述
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;

数据对齐

由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
在这里插入图片描述
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;

视频数据解包

数据解包是数据组包的逆过程,代码位置如下:
在这里插入图片描述
GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;
至此,数据进出GTP部分就已经讲完了,整个过程的框图我在代码中描述了,如下:
在这里插入图片描述

图像缓存

经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往
需要注意的是,为了适应UDP视频传输,这里的FDMA已被我修改,和以往版本不同,具体参考代码;

UDP数据组包

实现UDP数据的组包,UDP数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,帧头定义如下:
在这里插入图片描述
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
在这里插入图片描述
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;

UDP协议栈

本UDP协议栈方案需配合Xilinx的Tri Mode Ethernet MAC三速网IP一起使用,使用UDP协议栈网表文件,虽看不见源码但可正常实现UDP通信,该协议栈目前并不开源,只提供网表文件,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;
协议栈架构如下:
在这里插入图片描述
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
在这里插入图片描述
本UDP协议栈用户接口接收时序如下:
在这里插入图片描述

UDP协议栈数据发送

UDP协议栈具有发送和接收功能,但这里仅用到了发送,此部分代码架构如下:
在这里插入图片描述
UDP协议栈代码组我已经做好,用户可直接拿去使用;
这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
在这里插入图片描述
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;

IP地址、端口号的修改

UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置如下:
在这里插入图片描述

Tri Mode Ethernet MAC介绍以及移植注意事项

本设计调用了Xilinx官方IP:Tri Mode Ethernet MAC,其在代码中的位置如下:
在这里插入图片描述
可以看到其中泰处于被锁定状态,这是我们故意为之,目的是根据不同的PHY延时参数而修改其内部代码和内部时序约束代码,由于本设计使用的网络PHY为RTL8211,所以这里重点介绍使用RTL8211时,Tri Mode Ethernet MAC的修改和移植事项,当你需要工程移植,或者你的vivado版本与我的不一致时,Tri Mode Ethernet MAC都需要在vivado中进行升级,但由于该IP已被我们人为锁定,所以升级和修改需要一些高端操作,关于操作方法,我专门写了一篇文档,已附在资料包里,如下:
在这里插入图片描述

RTL8211

本设计开发板使用的网络PHY为RTL8211,工作在延时模式下,原理图引出了MDIO,但代码中不需要MDIO配置,通过上下拉电阻即可使RTL8211工作于延时模式,该PHY最高支持千兆,且能在10M/100M/1000M之间自动协商,但本设计在Tri Mode Ethernet MAC端固定为1000M;在资料包中,我们提供RTL8211的原理图;
在这里插入图片描述

QT上位机和源码

我们提供和UDP通信协议相匹配的QT抓图显示上位机及其源代码,目录如下:
在这里插入图片描述
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述,详情请参考资料包的QT源码,位置如下:
在这里插入图片描述

4、vivado工程1–>1路SFP传输

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:HDMI或者动态彩条,分辨率1920x1080@60Hz;
输出:SFP光口/RJ45网口;
应用:FPGA GTP+UDP架构,高速接口以太网视频传输,1路SFP光口;
工程Block Design如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
工程的资源消耗和功耗如下:
在这里插入图片描述

5、vivado工程2–>2路SFP传输

开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:HDMI或者动态彩条,分辨率1920x1080@60Hz;
输出:SFP光口/RJ45网口;
应用:FPGA GTP+UDP架构,高速接口以太网视频传输,2路SFP光口;
工程Block Design、工程代码架构、工程的资源消耗和第4章节的“vivado工程1–>1路SFP传输”一致;

6、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

7、上板调试验证并演示

准备工作

需要准备以下物品:
1:FPGA开发板;
2:板载HDMI输入接口,没有则选择代码里的动态彩条;
3:光模块和光纤;
4:网线;
5:上位机电脑,台式或笔记本;
工程1:1路SFP传输的光纤接法如下:在这里插入图片描述
工程2:2路SFP传输的光纤接法如下:
在这里插入图片描述
网口连接如下:
在这里插入图片描述
然后将你的电脑IP地址改为和代码里规定的IP一致,当然,代码里的IP是可以任意设置的,但代码里的IP修改后,电脑端的IP也要跟着改,我的设置如下:
在这里插入图片描述

ping一下

在开始测试前,我们先ping一下,测试UDP是否连通,如下:
在这里插入图片描述

静态演示

HDMI输入1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述
动态彩条1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述

动态演示

动态视频演示如下:

FPGA-GTP-UDP-HDMI

8、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1175641.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构与算法】JavaScript实现哈希表

文章目录 一、哈希表简介1.1.认识哈希表1.2.哈希化的方式1.3.解决冲突的方法1.4.寻找空白单元格的方式线性探测二次探测再哈希化 1.5.不同探测方式性能的比较1.6.优秀的哈希函数快速计算均匀分布 二、初步封装哈希表2.1.哈希函数的简单实现2.2.创建哈希表2.3.put(key,value)2.4…

时间序列预测模型实战案例(七)(TPA-LSTM)结合TPA注意力机制的LSTM实现多元预测

论文地址->TPA-LSTM论文地址 项目地址-> TPA-LSTM时间序列预测实战案例 本文介绍 本文通过实战案例讲解TPA-LSTM实现多元时间序列预测,在本文中所提到的TPA和LSTM分别是注意力机制和深度学习模型,通过将其结合到一起实现时间序列的预测,本文利用…

Google发布移动终端对象检测模型——mediapipe,无GPU依然飞快

对象检测模型最出名的当选YOLO系列,其YOLO系列已经更新到V8系列,但是现有的YOLO模型面临限制,如量化支持不足和准确性延迟权衡不足。 YOLO-NAS模型在包括COCO、Objects365和Roboflow 100在内的知名数据集上进行了预训练,使其非常适合生产环境中的下游对象检测任务。YOLO-NA…

unity【动画】脚本_角色动画控制器 c#

首先创建一个代码文件夹Scripts 从人物角色Player的基类开始 创建IPlayer类 首先我们考虑到如果不挂载MonoBehaviour需要将角色设置成预制体实例化到场景上十分麻烦, 所以我们采用继承MonoBehaviour类的角色基类方法写代码 也就是说这个脚本直接绑定在角色物体…

Quartz之JDBC-JobStoreTX配置

一、前言 上篇 《Quartz介绍》中使用的是RAMJobStored存储调度信息,当进程终止调度信息会丢失,本篇我们介绍使用JDBCJobStore来存储调度信息(jobs、Triggers和日历)。 二、Quartz 表结构 可以从官网(http://www.qua…

康耐视深度学习ViDi-ViDi四大工具介绍与主要用途

Cognex ViDi 工具是一系列机器视觉工具,通过深度学习解决各种难以解决的挑战。虽然这些工具共享一个引擎,但它们在图像中寻找的内容不同。更具体地说,在分析单个点、单个区域或完整图像时,每个工具都有不同的侧重点。 Locate&…

JUC并发编程系列(一):Java线程

前言 JUC并发编程是Java程序猿必备的知识技能,只有深入理解并发过程中的一些原则、概念以及相应源码原理才能更好的理解软件开发的流程。在这篇文章中荔枝会梳理并发编程的基础,整理有关Java线程以及线程死锁的知识,希望能够帮助到有需要的小…

30、JAVA进阶——Socket编程

✅作者简介:热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:乐趣国学的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏:JAVA开发者成长之路 ✨特色专栏:国学周更-心性养成之路 🥭本文内容:JAVA进阶——Socket编程 更多内容点击👇 …

idea2023 PoJie以后无法修改内存无效

1. 打开电脑环境变量 2. 找到对应pojie文件 vmoptions目录 3. 修改这个文件 添加或者修改配置 -Xms128m -Xmx8192m4. 重启idea 修改成功

flutter开发报错The instance member ‘widget‘ can‘t be accessed in an initializer

文章目录 问题描述问题原因解决方法 问题描述 The instance member ‘widget’ can’t be accessed in an initializer. 问题原因 “The instance member ‘widget’ can’t be accessed in an initializer” 错误是因为在初始化器列表中(constructor initializer…

JavaScript使用正则表达式

正则表达式(RegExp)也称规则表达式(regular expression),是非常强大的字符串操作工具,语法格式为一组特殊字符构成的匹配模式,用来匹配字符串。ECMAScript 3以Perl为基础规范JavaScript正则表达式,实现Perl 5正则表达式的子集。Ja…

Linux常用命令——cdrecord命令

在线Linux命令查询工具 cdrecord Linux系统下光盘刻录功能命令 补充说明 cdrecord命令用于Linux系统下光盘刻录,它支持cd和DVD格式。linux下一般都带有cdrecord软件。 语法 cdrecord(选项)(参数)选项 -v:显示刻录光盘的详细过程; -eje…

基于社交网络算法的无人机航迹规划-附代码

基于社交网络算法的无人机航迹规划 文章目录 基于社交网络算法的无人机航迹规划1.社交网络搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用社交网络算法来优化无人机航迹规划。 …

UseGalaxy.cn生信云|新增热图绘制工具:heatmap2

2023-11-05,Galaxy生信云平台 UseGalaxy.cn 新增绘制热图工具。 Graph/Display Data heatmap2 (Galaxy Version 3.1.3galaxy0) 使用方法 进入网址: https://usegalaxy.cn/root?tool_idtoolshed.g2.bx.psu.edu/repos/iuc/ggplot2_heatmap2/ggplot2_heatm…

8.接口与抽象类 深入多态

8.1 不该初始化的class 这个结构有什么不对? 这个class结构不算太差。如此设计已经能够维持最少的重复程序代码,且有需要特地实现的方法也已经被覆盖过。从多态的角度来看,我们也做到了适应性,所以任何Animal的子型,包…

什么是Spring?什么是IOC?什么是DI?IOC和DI的关系? —— 零基础可无压力学习,带源码

🧸欢迎来到dream_ready的博客,📜相信您对这几篇博客也感兴趣o (ˉ▽ˉ;) 📜什么是SpringMVC?简单好理解!什么是应用分层?SpringMVC与应用分层的关系? 什么是三层架构&…

【Unity细节】为什么UI移动了锚点,中心点和位置,运行的时候还是不在设置的位置当中

👨‍💻个人主页:元宇宙-秩沅 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 秩沅 原创 😶‍🌫️收录于专栏:unity细节和bug 😶‍🌫️优质专栏 ⭐【…

从行车记录仪恢复已删除/丢失视频的方法

“我的车里有行车记录仪。几天前,当我下班回家时,一辆卡车不知从哪里冒出来撞向了我。我们的两辆车都损坏了,但幸运的是,没有人受伤。我曾与卡车司机就修理我的汽车进行过会面,但他说我有错。我需要查看我的行车记录仪…

微服务注册中心之安装+实例搭建zookeeper

1.下载安装包并上传到Linux服务器 Apache ZooKeeper 可以使用wget或者curl命令 wget http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.7.1/apache-zookeeper-3.7.1-bin.tar.gz连接失败也可以本地下载之后上传到服务器 scp /本地/文件的/路径 用户名远程服务器IP或主…

(免费领源码)java#SSM#mysql基于响应式的网上书店系统27119-计算机毕业设计项目选题推荐

摘 要 随着信息技术在管理上越来越深入而广泛的应用,管理系统的实施在技术上已逐步成熟。管理系统是一个不断发展的新型学科,本文主要通过对响应式的网上书店系统的功能性需求分析,对系统的安全性和可扩展性进行了非功能性需求分析。在详细的…