剑指JUC原理-12.手写简易版线程池思路

news2025/1/15 23:04:03
  • 👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家
  • 📕系列专栏:Spring源码、JUC源码
  • 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
  • 🍂博主正在努力完成2023计划中:源码溯源,一探究竟
  • 📝联系方式:nhs19990716,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬👀

文章目录

  • 自定义线程池
      • 任务队列
      • 多维度测试
        • 阻塞版
        • 超时阻塞版
        • 阻塞队列溢出版
        • 拒绝策略版
          • 定义拒绝策略
          • 阻塞队列补充
          • 线程池补充
          • 运行
            • 死等
            • 带超时等待
            • 让调用者放弃任务执行
            • 让调用者抛出异常
            • 让调用者自己执行任务

自定义线程池

线程是一个系统资源,没创建一个新的线程就会占用一定的内存,会用栈内存,如果是高并发情况下,一下子来了很多任务,如果我为每个认为都创建一个新的线程,对内存的占用是非常大的,甚至可能会出现内存泄漏问题。

自定义线程池其实包含几个组件:
生产者,消费者,阻塞队列,两边的速率由阻塞队列等待。
线程也并不是创建的越多越好,大量的任务来了,创建了很多的线程,cpu一共就几个核,一下子来了那么多的线程,cpu忙不过来,必然让获取不到cpu时间片的线程,陷入阻塞,会引起线程上下文切换,把当前线程的状态保存下来,下次轮到的时候再取出来并恢复。线程上下文切换频繁,对系统性能应该很大。

基于上述两个原因,并不是每次都要创建新的线程,而是基于已有线程的潜力,去处理任务,而不是每次都创建新的。这也是享元模式的思想。

在这里插入图片描述

其实从上图就可以分析出来了,简易版本的线程池 有 生产者、消费者、阻塞队列。

其中我们需要实现的部分是 消费者 和 阻塞队列。

任务队列

接下来会在代码中 详解思路

class BlockingQueue<T> {
    // 首先定义最基本的,也就是任务队列、锁(对队列进行操作时需要用锁去控制)、生产者消费者变量(实际上之所以使用Lock 而不是 Synchronized的优势就是 wait 和 notify释放的方式是随机的,而 await signal是指定的,且Synchronized 只有一个waitset,而Lock可以指定多个条件变量,代码整洁度更加的明显)
    
    
    // 1. 任务队列
    private Deque<T> queue = new ArrayDeque<>();
    // 2. 锁
    private ReentrantLock lock = new ReentrantLock();
    // 3. 生产者条件变量
    private Condition fullWaitSet = lock.newCondition();
    // 4. 消费者条件变量
    private Condition emptyWaitSet = lock.newCondition();
    // 5. 容量
    private int capcity;
    public BlockingQueue(int capcity) {
        this.capcity = capcity;
    }
    
    // 阻塞分为 不带超时时间 和 带超时时间版本,其实就是当我们获取时 是一直阻塞等待还是超时结束,这里面分别调用不同的API,比如 await 和 awaitNanos
    
    // 带超时阻塞获取
    public T poll(long timeout, TimeUnit unit) {
        lock.lock();
        try {
            // 将 timeout 统一转换为 纳秒
            long nanos = unit.toNanos(timeout);
            while (queue.isEmpty()) {
                try {
                    // 返回值是剩余时间
                    if (nanos <= 0) {
                        return null;
                    }
                    nanos = emptyWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    // 阻塞获取
    public T take() {
        lock.lock();
        try {
            while (queue.isEmpty()) {
                try {
                    emptyWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    
    // 与阻塞获取同理
    
    // 阻塞添加
    public void put(T task) {
        lock.lock();
        try {
            while (queue.size() == capcity) {
                try {
                    System.out.println("等待加入任务队列  "+ task);
                    fullWaitSet.await();

                    /**
                     这里面其实是有一个点需要注意的,就是 其实 await 这次阻塞的是主线程,本质上,await还是会阻塞 并释放锁的。
                     */

                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println("加入任务队列 "+ task);
            queue.addLast(task);
            emptyWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }
    // 带超时时间阻塞添加
    public boolean offer(T task, long timeout, TimeUnit timeUnit) {
        lock.lock();
        try {
            long nanos = timeUnit.toNanos(timeout);
            while (queue.size() == capcity) {
                try {
                    if(nanos <= 0) {
                        return false;
                    }

                    System.out.println("等待加入任务队列 "+ task);
                    nanos = fullWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }

            System.out.println("加入任务队列 "+ task);
            queue.addLast(task);
            emptyWaitSet.signal();
            return true;
        } finally {
            lock.unlock();
        }
    }
    public int size() {
        lock.lock();
        try {
            return queue.size();
        } finally {
            lock.unlock();
        }
    }
}

线程池

class ThreadPool {
    
    // 目前该版本的是不带拒绝策略的线程池,所以需要的参数有 核心线程数、任务队列、超时时间、单位
    
    // 任务队列
    private BlockingQueue<Runnable> taskQueue;
    // 线程集合
    private HashSet<Worker> workers = new HashSet<>();
    // 核心线程数
    private int coreSize;
    // 获取任务时的超时时间
    private long timeout;

    private TimeUnit timeUnit;

    // 执行任务
    public void execute(Runnable task) {
        // 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
        // 如果任务数超过 coreSize 时,加入任务队列暂存
        synchronized (workers) {
            if(workers.size() < coreSize) {
                Worker worker = new Worker(task);
                System.out.println("新增 worker "+ worker + "    " + task);
                workers.add(worker);
                worker.start();
            } else {
                taskQueue.put(task);
            }
        }
    }


    public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity) {
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.taskQueue = new BlockingQueue<>(queueCapcity);
    }

    class Worker extends Thread{
        private Runnable task;
        public Worker(Runnable task) {
            this.task = task;
        }
        @Override
        public void run() {
            // 执行任务
            // 1) 当 task 不为空,执行任务
            // 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
//             while(task != null || (task = taskQueue.take()) != null) {
            while(task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
                try {

                    System.out.println("正在执行 "+task);
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            synchronized (workers) {

                System.out.println("worker 被移除"+ this);
                workers.remove(this);
            }
        }
    }
}

多维度测试

阻塞版
		ThreadPool threadPool = new ThreadPool(2, 1000, TimeUnit.MILLISECONDS, 10);

        for (int i = 0; i < 5; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    Thread.sleep(1000L);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(j);
            });
        }

输出:

新增 worker Thread[Thread-0,5,main]    test2$$Lambda$1/1831932724@448139f0
新增 worker Thread[Thread-1,5,main]    test2$$Lambda$1/1831932724@7ba4f24f
加入任务队列 test2$$Lambda$1/1831932724@7699a589
正在执行 test2$$Lambda$1/1831932724@448139f0
正在执行 test2$$Lambda$1/1831932724@7ba4f24f
加入任务队列 test2$$Lambda$1/1831932724@58372a00
加入任务队列 test2$$Lambda$1/1831932724@4dd8dc3
1
0
正在执行 test2$$Lambda$1/1831932724@7699a589
正在执行 test2$$Lambda$1/1831932724@58372a00
3
2
正在执行 test2$$Lambda$1/1831932724@4dd8dc3
4
... 未退出

首先分析一下这个结果流程(后面的结果大体思路一致,故不做分析!!!)

前两行打印 ”新增 …“ 其实是因为 执行execute 方法时走了 if逻辑,创建了两个线程,故打印

而其余的三个线程因为 走了else逻辑,最终执行put方法,打印 ”加入任务队列“

两句 ”正在执行“ 是因为 符合 worker线程中的 while逻辑,故 打印”正在执行…“

然后 前两个线程 执行完了,输出 0 1

此时,这两个线程 中的while条件 while(task != null || (task = taskQueue.take()) != null) 中,task = taskQueue.take() 阻塞获取新的任务,获取了两个新的线程,然后 打印”正在执行…“ 输出 2 3

最后又执行while逻辑,将最后一个任务 执行,并打印,而两个线程继续执行while里面的 阻塞获取,程序并未退出!!!

之所以会是这个结果,是因为前面这里是这样设置的

class Worker extends Thread{
        private Runnable task;
        public Worker(Runnable task) {
            this.task = task;
        }
        @Override
        public void run() {
            // 执行任务
            // 1) 当 task 不为空,执行任务
            // 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
             while(task != null || (task = taskQueue.take()) != null) {
            //while(task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
                try {

                    System.out.println("正在执行 "+task);
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            synchronized (workers) {

                System.out.println("worker 被移除"+ this);
                workers.remove(this);
            }
        }
    }
超时阻塞版

想实现,故使用超时阻塞获取的办法即可

class Worker extends Thread{
        private Runnable task;
        public Worker(Runnable task) {
            this.task = task;
        }
        @Override
        public void run() {
            // 执行任务
            // 1) 当 task 不为空,执行任务
            // 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
             //while(task != null || (task = taskQueue.take()) != null) {
            while(task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
                try {

                    System.out.println("正在执行 "+task);
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            synchronized (workers) {

                System.out.println("worker 被移除"+ this);
                workers.remove(this);
            }
        }
    }

输出:

新增 worker Thread[Thread-0,5,main]    test2$$Lambda$1/1831932724@448139f0
新增 worker Thread[Thread-1,5,main]    test2$$Lambda$1/1831932724@7ba4f24f
正在执行 test2$$Lambda$1/1831932724@448139f0
加入任务队列 test2$$Lambda$1/1831932724@7699a589
正在执行 test2$$Lambda$1/1831932724@7ba4f24f
加入任务队列 test2$$Lambda$1/1831932724@58372a00
加入任务队列 test2$$Lambda$1/1831932724@4dd8dc3
0
1
正在执行 test2$$Lambda$1/1831932724@7699a589
正在执行 test2$$Lambda$1/1831932724@58372a00
2
3
正在执行 test2$$Lambda$1/1831932724@4dd8dc3
4
worker 被移除Thread[Thread-1,5,main]
worker 被移除Thread[Thread-0,5,main]

Process finished with exit code 0
阻塞队列溢出版

有一个这样的场景,假设设置核心数为2 等待队列长度为10,而此时15个人任务都来了,那么剩下的3个怎么处理呢?

for (int i = 0; i < 15; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    // 将时间拉长,不能一下子执行完
                    Thread.sleep(10000000L);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(j);
            });
        }

输出:

新增 worker Thread[Thread-0,5,main]    test2$$Lambda$1/1831932724@448139f0
新增 worker Thread[Thread-1,5,main]    test2$$Lambda$1/1831932724@7ba4f24f
正在执行 test2$$Lambda$1/1831932724@448139f0
正在执行 test2$$Lambda$1/1831932724@7ba4f24f
加入任务队列 test2$$Lambda$1/1831932724@7699a589
加入任务队列 test2$$Lambda$1/1831932724@58372a00
加入任务队列 test2$$Lambda$1/1831932724@4dd8dc3
加入任务队列 test2$$Lambda$1/1831932724@6d03e736
加入任务队列 test2$$Lambda$1/1831932724@568db2f2
加入任务队列 test2$$Lambda$1/1831932724@378bf509
加入任务队列 test2$$Lambda$1/1831932724@5fd0d5ae
加入任务队列 test2$$Lambda$1/1831932724@2d98a335
加入任务队列 test2$$Lambda$1/1831932724@16b98e56
加入任务队列 test2$$Lambda$1/1831932724@7ef20235
等待加入任务队列  test2$$Lambda$1/1831932724@27d6c5e0
... 未退出

其实本质上是一样的,但是需要着重分析下,实际的流程是这样的

public void execute(Runnable task) {
        // 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
        // 如果任务数超过 coreSize 时,加入任务队列暂存
        synchronized (workers) {
            if(workers.size() < coreSize) {
                Worker worker = new Worker(task);
                System.out.println("新增 worker "+ worker + "    " + task);
                workers.add(worker);
                worker.start();
            } else {
                taskQueue.put(task);
            }
        }
    }
// 阻塞添加
    public void put(T task) {
        lock.lock();
        try {
            while (queue.size() == capcity) {
                try {
                    System.out.println("等待加入任务队列  "+ task);
                    fullWaitSet.await();

                    /**
                     这里面其实是有一个点需要注意的,就是 其实 await 这次阻塞的是主线程,本质上,await还是会阻塞 并释放锁的。
                     */

                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            System.out.println("加入任务队列 "+ task);
            queue.addLast(task);
            emptyWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }

可以分析到,后13个线程都去执行了put,而这其中的前十次都能逐步的获取锁插入,而第十一次就执行await卡死,没有第十二次和第十三次的输出了。在学习前面章节的时候我们知道,await其实和wait很像,一旦执行就会阻塞,并且释放锁,等到将来苏醒了再去竞争锁。但是为什么没有第十二次和第十三次的输出呢?

这个的原因要从main函数看:

	ThreadPool threadPool = new ThreadPool(2, 1000, TimeUnit.MILLISECONDS, 10);

        for (int i = 0; i < 15; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    // 将时间拉长,不能一下子执行完
                    Thread.sleep(10000000L);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(j);
            });
        }

它并不是执行了多个线程,如果在多线程的情况下,await会释放锁,请看这个例子

static ReentrantLock lock = new ReentrantLock();
    static Condition waitCigaretteQueue = lock.newCondition();
    static Condition waitbreakfastQueue = lock.newCondition();
    static volatile boolean hasCigrette = false;
    static volatile boolean hasBreakfast = false;
    public static void main(String[] args) throws InterruptedException {
        new Thread(() -> {
            try {

                lock.lock();
                while (!hasCigrette) {
                    try {
                        System.out.println("烟");
                        waitCigaretteQueue.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println("等到了它的烟");
            } finally {
                lock.unlock();
            }
        }).start();

        new Thread(() -> {

            try {
                lock.lock();
                while (!hasBreakfast) {
                    try {
                        System.out.println("早餐");
                        waitbreakfastQueue.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }

                System.out.println("等到了它的早餐");
            } finally {
                lock.unlock();
            }
        }).start();
        Thread.sleep(10000);
        sendBreakfast();
        Thread.sleep(10000);
        sendCigarette();
    }
    private static void sendCigarette() {
        lock.lock();
        try {

            System.out.println("送烟来了");
            hasCigrette = true;
            waitCigaretteQueue.signal();
        } finally {
            lock.unlock();
        }
    }
    private static void sendBreakfast() {
        lock.lock();
        try {

            System.out.println("送早餐来了");
            hasBreakfast = true;
            waitbreakfastQueue.signal();
        } finally {
            lock.unlock();
        }
    }

该例子的输出能够很有效的证明这一点,所以关于await这部分需要注意!!!

拒绝策略版

实际上,阻塞队列溢出,一直阻塞就相当于一种拒绝策略!

定义拒绝策略
@FunctionalInterface // 拒绝策略
interface RejectPolicy<T> {
    void reject(BlockingQueue<T> queue, T task);
}
阻塞队列补充
public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
        lock.lock();
        try {
            // 判断队列是否满
            if(queue.size() == capcity) {
                rejectPolicy.reject(this, task);
            } else { // 有空闲

                System.out.println("加入任务队列 "+ task);
                queue.addLast(task);
                emptyWaitSet.signal();
            }
        } finally {
            lock.unlock();
        }
    }

可以看到,核心的拒绝策略是用户自己提供的

线程池补充
private RejectPolicy<Runnable> rejectPolicy;

public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity,
                      RejectPolicy<Runnable> rejectPolicy) {
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.taskQueue = new BlockingQueue<>(queueCapcity);
        this.rejectPolicy = rejectPolicy;
    }

public void execute(Runnable task) {
        // 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
        // 如果任务数超过 coreSize 时,加入任务队列暂存
        synchronized (workers) {
            if(workers.size() < coreSize) {
                Worker worker = new Worker(task);
                System.out.println("新增 worker "+ worker + "    " + task);
                workers.add(worker);
                worker.start();
            } else {
                //taskQueue.put(task);
                // 1) 死等
                // 2) 带超时等待
                // 3) 让调用者放弃任务执行
                // 4) 让调用者抛出异常
                // 5) 让调用者自己执行任务
                taskQueue.tryPut(rejectPolicy, task);
            }
        }
    }
运行
ThreadPool threadPool = new ThreadPool(1,
                    1000, TimeUnit.MILLISECONDS, 1, (queue, task)->{
                // 1. 死等
				 queue.put(task);
                // 2) 带超时等待
				// queue.offer(task, 1500, TimeUnit.MILLISECONDS);
                // 3) 让调用者放弃任务执行
				// log.debug("放弃{}", task);
                // 4) 让调用者抛出异常
				// throw new RuntimeException("任务执行失败 " + task);
                // 5) 让调用者自己执行任务
                //task.run();
            });

        for (int i = 0; i < 3; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    Thread.sleep(10000000L);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

                System.out.println(j);
            });
        }
死等
新增 worker Thread[Thread-0,5,main]    test2$$Lambda$2/2093631819@58372a00
加入任务队列 test2$$Lambda$2/2093631819@6d03e736
等待加入任务队列  test2$$Lambda$2/2093631819@568db2f2
正在执行 test2$$Lambda$2/2093631819@58372a00
...死等

可以看到,第三个线程确实死等了

带超时等待

ThreadPool threadPool = new ThreadPool(1,
                    1000, TimeUnit.MILLISECONDS, 1, (queue, task)->{
                // 1. 死等
				// queue.put(task);
                // 2) 带超时等待
				 queue.offer(task, 500, TimeUnit.MILLISECONDS);
                // 3) 让调用者放弃任务执行
				// log.debug("放弃{}", task);
                // 4) 让调用者抛出异常
				// throw new RuntimeException("任务执行失败 " + task);
                // 5) 让调用者自己执行任务
                //task.run();
            });

for (int i = 0; i < 3; i++) {
            int j = i;
            threadPool.execute(() -> {
                try {
                    Thread.sleep(1000L);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

                System.out.println(j);
            });
        }

输出:

新增 worker Thread[Thread-0,5,main]    test2$$Lambda$2/2093631819@58372a00
加入任务队列 test2$$Lambda$2/2093631819@6d03e736
等待加入任务队列 test2$$Lambda$2/2093631819@568db2f2
正在执行 test2$$Lambda$2/2093631819@58372a00
0
正在执行 test2$$Lambda$2/2093631819@6d03e736
1
worker 被移除Thread[Thread-0,5,main]

可以看到 第三个任务确实取消了

让调用者放弃任务执行

输出:

新增 worker Thread[Thread-0,5,main]    test2$$Lambda$2/2093631819@58372a00
加入任务队列 test2$$Lambda$2/2093631819@6d03e736
放弃 test2$$Lambda$2/2093631819@568db2f2
正在执行 test2$$Lambda$2/2093631819@58372a00
0
正在执行 test2$$Lambda$2/2093631819@6d03e736
1
worker 被移除Thread[Thread-0,5,main]
让调用者抛出异常

输出:

新增 worker Thread[Thread-0,5,main]    test2$$Lambda$2/2093631819@58372a00
加入任务队列 test2$$Lambda$2/2093631819@6d03e736
正在执行 test2$$Lambda$2/2093631819@58372a00
Exception in thread "main" java.lang.RuntimeException: 任务执行失败 test2$$Lambda$2/2093631819@568db2f2
	at test2.lambda$main$0(test2.java:53)
	at BlockingQueue.tryPut(test2.java:200)
	at ThreadPool.execute(test2.java:247)
	at test2.main(test2.java:60)
0
正在执行 test2$$Lambda$2/2093631819@6d03e736
1
worker 被移除Thread[Thread-0,5,main]
让调用者自己执行任务

输出:

新增 worker Thread[Thread-0,5,main]    test2$$Lambda$2/2093631819@58372a00
加入任务队列 test2$$Lambda$2/2093631819@6d03e736
正在执行 test2$$Lambda$2/2093631819@58372a00
0
2
正在执行 test2$$Lambda$2/2093631819@6d03e736
1
worker 被移除Thread[Thread-0,5,main]

可以看到 0 2同时输出了,2是主线程执行的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1174663.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么要学中文编程?它能有哪些益处?免费版编程工具怎么下载?系统化的编程教程课程怎么学习

一、为什么要学习这个编程工具&#xff1f;能给自己带来什么益处&#xff1f; 1、不论在哪里上班&#xff0c;都不是铁饭碗&#xff1a;现在全球经济低迷&#xff0c;使得很多企业倒闭&#xff0c; 大到知名国企小到私营企业&#xff0c;大量裁员。任何人都无法保证自己现在的…

操作系统学习与思考

x86体系架构 x86是因特尔8086代芯片的CPU总线位数以及寄存器种类的规范&#xff0c;大部分操作系统都是以该规范作为基准来生产的 计算机组成 CPU&#xff0c;可以根据程序计数器进行取指令操作&#xff0c;并根据指令执行运算&#xff08;加、减、乘、除&#xff09;。运算所…

从0到1:腾讯云服务器使用教程

腾讯云服务器入门教程包括云服务器CPU内存带宽配置选择&#xff0c;选择云服务器CVM或轻量应用服务器&#xff0c;云服务器创建后重置密码、远程连接、搭建程序环境等&#xff0c;腾讯云服务器网txyfwq.com分享从0到1腾讯云服务器入门教程&#xff1a; 目录 腾讯云服务器入门…

多目标优化算法:多目标霸王龙优化算法(MOTROA)MATLAB

一、霸王龙优化算法 霸王龙优化算法&#xff08;Tyrannosaurus optimization&#xff0c;TROA&#xff09;由Venkata Satya Durga Manohar Sahu等人于2023年提出&#xff0c;该算法模拟霸王龙的狩猎行为&#xff0c;具有搜索速度快等优势。 参考文献&#xff1a; [1]Venkata …

pg14-sql基础(二)-排序与统计

排序 SELECT employee_id, first_name, last_name, hire_date, salary FROM employees ORDER BY first_name; --按字母&#xff0c;默认升序 ORDER BY hire_date ASC; --升序 ORDER BY hire_date DESC; --降序SELECT employee_id, first_name, last_name, hire_date, salary F…

[MICROSAR Adaptive] --- autosar官方文档阅读建议

目前互联网上没有太多的 Adaptive AUTOSAR 的学习资料,官方文档是一个很不错的途径。看过官方文档才发现,目前很多关于 Adaptive AUTOSAR 的文章都是官方文档的简化翻译,不如直接看官方文档更全面深入。 1 Adaptive AUTOSAR 文档官方下载地址 https://www.autosar.org/sta…

百面深度学习-循环神经网络

循环神经网络 什么是循环神经网络&#xff1f; 循环神经网络&#xff08;Recurrent Neural Network&#xff0c;RNN&#xff09;是一类用于处理序列数据的神经网络。你可以将它想象成一个机器&#xff0c;它不仅考虑当前的输入&#xff0c;还考虑之前接收过的输入。这使得它非…

Android---彻底掌握 Handler

Handler 现在几乎是 Android 面试的必问知识点&#xff0c;大多数 Adnroid 工程师都在项目中使用过 Handler。主要场景是子线程完成耗时操作的过程中&#xff0c;通过 Handler 向主线程发送消息 Message&#xff0c;用来刷新 UI 界面。 下面我们来了解 Handler 的发送消息和处…

Jupyter 两个炸裂的骚操作!

大家好&#xff0c;Jupyter的常用功能不多说了&#xff0c;关注我的粉丝相信都比较熟悉了&#xff0c;不了解的可以看看历史文章。 今天聊两个不太常见但很有用的骚操作&#xff0c;可以为我们节省大量的时间&#xff0c;提高效率。 下面我们开始介绍。 一、获取历史执行信息…

思维模型 权威效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。人微言轻、人贵言重 1 权威效应的应用 1.1 苹果公司的权威效应和品牌效应 苹果公司是全球知名的科技公司&#xff0c;其产品以高品质、高性能和高设计感著称。苹果公司的品牌效应和权威效…

Java8实战-总结46

Java8实战-总结46 CompletableFuture&#xff1a;组合式异步编程让代码免受阻塞之苦使用 CompletableFuture 发起异步请求寻找更好的方案 CompletableFuture&#xff1a;组合式异步编程 让代码免受阻塞之苦 使用 CompletableFuture 发起异步请求 可以使用工厂方法supplyAsyn…

复杂物体线结构光中心线提取方法研究

论文地址&#xff1a;Excellent-Paper-For-Daily-Reading/application/centerline at main 类别&#xff1a;应用——中心线提取 时间&#xff1a;2023/11/05 摘要 针对复杂物体动态三维测量中条纹图像过曝光、欠曝光以及环境光照干扰引起激光中心线提取速度慢、提取 不准确…

vue3项目实践

创建 vue3 项目 node本版&#xff1a;node 16.x.x&#xff0c; 脚手架&#xff1a;create-vue 脚手架工具&#xff0c;底层vite 创建vue3项目&#xff1a;npm init vuelatest setup函数 vue3 单文件组件 1、vite.config.js配置文件基于vite的配置 2、template模板不再要求唯…

从源码中看@Qualifier注解

theme: smartblue 摘要 Qualifier注解通常和Autowired注解一起使用&#xff0c;那么首先来看Autowire是怎么把Bean对象注入到Spring容器中的。 前置-Autowired注入原理 前置条件&#xff1a;需要读者了解Autowired是如何将类注入进来的。 深入解析 Spring Framework 中 Au…

【QT基础入门 控件篇】QLineEdit 基础、高级和样式表使用详解

一、QLineEdit简介 QLineEdit是一个单行文本编辑器&#xff0c;它可以让用户输入和编辑纯文本&#xff0c;也可以设置一些有用的编辑功能&#xff0c;如撤销和重做、剪切和粘贴、拖放等。QLineEdit: 可以根据不同的回显模式&#xff08;echoMode&#xff09;来显示不同的输入内…

pg14-sql基础(三)-分组

分组 SELECT hire_date, COUNT(*) FROM employees GROUP BY hire_date;SELECT extract(year from hire_date), COUNT(*) FROM employees GROUP BY extract(year from hire_date); -- GROUP BY 1;SELECT extract(year from hire_date), department_id, COUNT(*) FROM employees…

springboot 连接西门子plc,读取对应的值,并修改到数据库

springboot 连接西门子plc&#xff0c;读取对应的值&#xff0c;并修改到数据库 需求&#xff1a;服务器连接plc&#xff0c;读取数据&#xff0c;之后写入到数据库&#xff0c;但是要求速度很快&#xff0c;而且plc中命令对应的值是不断变化的&#xff0c;这个变化&#xff0c…

Python基础入门例程46-NP46 菜品的价格(条件语句)

最近的博文&#xff1a; Python基础入门例程45-NP45 禁止重复注册&#xff08;条件语句&#xff09;-CSDN博客 Python基础入门例程44-NP44 判断列表是否为空&#xff08;条件语句&#xff09;-CSDN博客 Python基础入门例程43-NP43 判断布尔值&#xff08;条件语句&#xff0…

[原创]Cadence17.4,win64系统,构建CIS库

目录 1、背景介绍 2、具体操作流程 3、遇到问题、分析鉴别问题、解决问题 4、借鉴链接并评论 1、背景介绍 CIS库&#xff0c;绘制原理图很方便&#xff0c;但是需要在Cadence软件与数据库之间建立联系&#xff0c;但是一直不成功&#xff0c;花费半天时间才搞明白如何建立关系并…

思维模型 门槛效应/登门槛效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。跨过一个个门槛&#xff0c;走向你该走向的“深渊”和“光明”。 说明&#xff1a;后面 门槛效应/登门槛效应 均使用门槛效应替代 1 门槛效应的应用 1.1 营销策略中的门槛效应 免费试用&…