Unity地面交互效果——3、曲面细分基础知识

news2024/11/25 7:01:07

  大家好,我是阿赵。
  之前介绍了使用动态法线贴图混合的方式模拟轨迹的凹凸感,这次来讲一下更真实的凹凸感制作。不过在说这个内容之前,这一篇先要介绍一下曲面细分着色器(Tessellation Shader)的用法。

一、为什么要做曲面细分

  之前通过法线贴图模拟了凹凸的感觉:
在这里插入图片描述

  法线贴图不会真的产生凹凸,它只是改变了这个平面上面的法线方向。所以,只有通过光照模型,通过法线方向和灯光方向进行点乘,才会计算出不同的光照角度,让我们产生一定的凹凸感觉。
  但如果想做到这样的效果,法线贴图是不行的:
在这里插入图片描述

  这种效果,球是真的陷进去地面了。很明显,这些都是需要偏移顶点让网格产生真实的变形,才能做到。
  不过这里有一个问题,如果地面的网格面数并不是很高,那么就算我们有能力去偏移顶点,也产生不了这样好的效果。
  比如一般的地面网格的面数都很低,只有这样的水平:
在这里插入图片描述

  这个时候,球所在的地方,根本就没有顶点,所以也偏移不了。就算再稍微多一点面,这样的地面网格面数算比较高了,仍然产生不了很好的凹凸效果:
在这里插入图片描述

  所以这里有一个很严重的问题,我们难道需要用几十万甚至几百万面,去做一个地面的模型,才能产生真实的凹凸感吗?
  这是不可能的,实际的情况是:
在这里插入图片描述

  在需要到很精确的顶点控制的一个小局部,才需要把面数变高,其他的地方,面数很是很低的。具体可以看看这个视频:

Unity引擎动态曲面细分

  而这里用到的局部增加面数的技术,就是曲面细分(Tessellation)了。

二、曲面细分的过程

  在Unity里面写顶点片段着色器的Shader,我们一般只会注意到需要些Vertex顶点程序,和fragment片段程序,因为在大多数情况下,其他的渲染管线流程都不是我们可以控制的,而我们能控制顶点程序改变模型的形状,控制片段程序来改变模型的颜色。
  但在顶点程序和片段程序中间,其实还有一个曲面细分(tessellate)的过程,这个过程有2个程序是我们可以控制的
1、hullProgram
  这个程序会接受每个多边形各个顶点的信息,记录下来,然后通过指定一个Patch Constant Function,去设置细分的数量,这个过程是针对多边形的每一条边,还有多边形的内部,分别设置拆分的数量的。
2、domainProgram
  在前面的hullProgram里面,其实只是设置了顶点信息和拆分数量,并没有真正的生成新的网格。而在这个domainProgram里面,拆分后的顶点信息已经产生了,所以可以对拆分后的顶线进行操作,可以计算他们的位置、法线、uv等。
  为了避免难以理解,也不说太多,只要知道,需要做曲面细分的时候,需要添加2个程序过程,一个过程设置了拆分的数量和其他参数,另外一个过程就得到了顶点,可以进行实际操作,这样就行了。

三、曲面细分在Unity引擎的实现

1、Surface类型着色器

  Surface类型的Shader提供了很多Unity封装好的方法,也包括提供了对应曲面细分着色器的方法。
使用很简单:
1.#include “Tessellation.cginc”
2.指定曲面细分的方法:tessellate:tessFunction
3.指定target 4.6

在这里插入图片描述

看到这里有target 4.6的声明了,没错Unity官方的说明也是这样的:

When you use tessellation, the shader is automatically compiled into
the Shader Model 4.6 target, which prevents support for running on
older graphics targets.

  这里着重说一下曲面细分方法。
  由于Surface的曲面细分方法是Unity封装好的,所以我们不需要走正常的渲染流程,不需要指定hullProgram、Patch Constant Function和domainProgram,只需要指定一个tessellate处理方法。这个方法实际是返回一个曲面细分的值,来决定某个面具体要细分成多少个网格。
而在Unity提供的方法里面,对于怎样细分曲面,提供了3种选择:

1.Fixed固定数量细分

  这种方式细分,在tessFunction里面直接返回一个数值,然后全部面就按照统一的数值去细分。
在这里插入图片描述

unity官方文档里面的例子是这样

Shader "Tessellation Sample" {
        Properties {
            _Tess ("Tessellation", Range(1,32)) = 4
            _MainTex ("Base (RGB)", 2D) = "white" {}
            _DispTex ("Disp Texture", 2D) = "gray" {}
            _NormalMap ("Normalmap", 2D) = "bump" {}
            _Displacement ("Displacement", Range(0, 1.0)) = 0.3
            _Color ("Color", color) = (1,1,1,0)
            _SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)
        }
        SubShader {
            Tags { "RenderType"="Opaque" }
            LOD 300
            
            CGPROGRAM
            #pragma surface surf BlinnPhong addshadow fullforwardshadows vertex:disp tessellate:tessFixed nolightmap
            #pragma target 4.6

            struct appdata {
                float4 vertex : POSITION;
                float4 tangent : TANGENT;
                float3 normal : NORMAL;
                float2 texcoord : TEXCOORD0;
            };

            float _Tess;

            float4 tessFixed()
            {
                return _Tess;
            }

            sampler2D _DispTex;
            float _Displacement;

            void disp (inout appdata v)
            {
                float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;
                v.vertex.xyz += v.normal * d;
            }

            struct Input {
                float2 uv_MainTex;
            };

            sampler2D _MainTex;
            sampler2D _NormalMap;
            fixed4 _Color;

            void surf (Input IN, inout SurfaceOutput o) {
                half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
                o.Albedo = c.rgb;
                o.Specular = 0.2;
                o.Gloss = 1.0;
                o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
            }
            ENDCG
        }
        FallBack "Diffuse"
    }

其中曲面细分方法是直接返回了一个指定的值

float4 tessFixed()
{
    return _Tess;
}

2.根据距离细分

  这里的距离,指的是和摄像机的距离。根据离摄像机不同的距离,设置一个范围来细分
在这里插入图片描述

unity官方文档里面的例子是这样:

   Shader "Tessellation Sample" {
        Properties {
            _Tess ("Tessellation", Range(1,32)) = 4
            _MainTex ("Base (RGB)", 2D) = "white" {}
            _DispTex ("Disp Texture", 2D) = "gray" {}
            _NormalMap ("Normalmap", 2D) = "bump" {}
            _Displacement ("Displacement", Range(0, 1.0)) = 0.3
            _Color ("Color", color) = (1,1,1,0)
            _SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)
        }
        SubShader {
            Tags { "RenderType"="Opaque" }
            LOD 300
            
            CGPROGRAM
            #pragma surface surf BlinnPhong addshadow fullforwardshadows vertex:disp tessellate:tessDistance nolightmap
            #pragma target 4.6
            #include "Tessellation.cginc"

            struct appdata {
                float4 vertex : POSITION;
                float4 tangent : TANGENT;
                float3 normal : NORMAL;
                float2 texcoord : TEXCOORD0;
            };

            float _Tess;

            float4 tessDistance (appdata v0, appdata v1, appdata v2) {
                float minDist = 10.0;
                float maxDist = 25.0;
                return UnityDistanceBasedTess(v0.vertex, v1.vertex, v2.vertex, minDist, maxDist, _Tess);
            }

            sampler2D _DispTex;
            float _Displacement;

            void disp (inout appdata v)
            {
                float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;
                v.vertex.xyz += v.normal * d;
            }

            struct Input {
                float2 uv_MainTex;
            };

            sampler2D _MainTex;
            sampler2D _NormalMap;
            fixed4 _Color;

            void surf (Input IN, inout SurfaceOutput o) {
                half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
                o.Albedo = c.rgb;
                o.Specular = 0.2;
                o.Gloss = 1.0;
                o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
            }
            ENDCG
        }
        FallBack "Diffuse"
    }

其中曲面细分方法是传入了最小距离、最大距离和一个控制值

float4 tessDistance (appdata v0, appdata v1, appdata v2) {
	 float minDist = 10.0;
	float maxDist = 25.0;
	return UnityDistanceBasedTess(v0.vertex, v1.vertex, v2.vertex, minDist, maxDist, _Tess);
}

UnityDistanceBasedTess就是Unity提供的根据距离计算细分值的方法。

3.根据边的长度细分

  这个根据边的长度,指的是多边形的边,在屏幕里面渲染的大小。
在这里插入图片描述

  所以从左图可以看出,越近屏幕的边,渲染的长度越大,所以细分得越多,而离屏幕越远的边,渲染的长度越小,细分得也越少。
  从右图可以看出,同一个模型,如果通过缩放把边拉长,它的细分程度也会随着模型拉长而变大,最后保持着一个比较固定的细分密度。
unity官方文档里面的例子是这样的:

    Shader "Tessellation Sample" {
        Properties {
            _EdgeLength ("Edge length", Range(2,50)) = 15
            _MainTex ("Base (RGB)", 2D) = "white" {}
            _DispTex ("Disp Texture", 2D) = "gray" {}
            _NormalMap ("Normalmap", 2D) = "bump" {}
            _Displacement ("Displacement", Range(0, 1.0)) = 0.3
            _Color ("Color", color) = (1,1,1,0)
            _SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)
        }
        SubShader {
            Tags { "RenderType"="Opaque" }
            LOD 300
            
            CGPROGRAM
            #pragma surface surf BlinnPhong addshadow fullforwardshadows vertex:disp tessellate:tessEdge nolightmap
            #pragma target 4.6
            #include "Tessellation.cginc"

            struct appdata {
                float4 vertex : POSITION;
                float4 tangent : TANGENT;
                float3 normal : NORMAL;
                float2 texcoord : TEXCOORD0;
            };

            float _EdgeLength;

            float4 tessEdge (appdata v0, appdata v1, appdata v2)
            {
                return UnityEdgeLengthBasedTess (v0.vertex, v1.vertex, v2.vertex, _EdgeLength);
            }

            sampler2D _DispTex;
            float _Displacement;

            void disp (inout appdata v)
            {
                float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;
                v.vertex.xyz += v.normal * d;
            }

            struct Input {
                float2 uv_MainTex;
            };

            sampler2D _MainTex;
            sampler2D _NormalMap;
            fixed4 _Color;

            void surf (Input IN, inout SurfaceOutput o) {
                half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;
                o.Albedo = c.rgb;
                o.Specular = 0.2;
                o.Gloss = 1.0;
                o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
            }
            ENDCG
        }
        FallBack "Diffuse"
}

其中曲面细分程序传入一个指定的值,需要注意的是,这个值越小,细分得越多

float4 tessEdge (appdata v0, appdata v1, appdata v2)
{
	return UnityEdgeLengthBasedTess (v0.vertex, v1.vertex, v2.vertex, _EdgeLength);
}

UnityEdgeLengthBasedTess 是Unity提供的根据边长细分的方法

2、顶点片段程序实现曲面细分

  如果不使用Surface类型的Shader,而用传统的顶点片段程序着色器,实现曲面细分就只有一种方式,就是正常的添加hullProgram、Patch Constant Function和domainProgram,然后逐条边和多边形内部指定细分的数量。我这里提供一个最简单的Shader来说明一下写法:

Shader "azhao/TessVF"
{
    Properties
    {
		_MainTex("Texture", 2D) = "white" {}
		_Color("Color", Color) = (1,1,1,1)
		_EditFactor("edgeFactor", Float) = 15
		_InsideFactor("insideFactor",FLoat)  =15

    }
    SubShader
    {
        Tags { "RenderType"="Opaque" }
        LOD 100

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
			//在正常的vertex和fragment之间还需要hull和domain,所以在这里加上声明
			#pragma hull hullProgram
			#pragma domain domainProgram
            #pragma fragment frag


            #include "UnityCG.cginc"
			sampler2D _MainTex;
			float4 _MainTex_ST;
			fixed4 _Color;
			uniform float _EditFactor;
			uniform float _InsideFactor;
			struct a2v
			{
				float4 pos	: POSITION;
				float2 uv  : TEXCOORD0;
			};

			struct v2t
			{
				float4 worldPos	: TEXCOORD0;
				float2 uv  : TEXCOORD1;
			};
			struct t2f
			{
				float4 clipPos:SV_POSITION;
				float2 uv: TEXCOORD0;
				float4 worldPos:TEXCOORD1;
				
			};

			struct TessOut
			{
				float2 uv  : TEXCOORD0;
				float4 worldPos	: TEXCOORD1;
				
			};
			struct TessParam
			{
				float EdgeTess[3]	: SV_TessFactor;//各边细分数
				float InsideTess : SV_InsideTessFactor;//内部点细分数
			};

			v2t vert(a2v i)
			{
				v2t o;
				o.worldPos = mul(unity_ObjectToWorld,i.pos);
				o.uv = i.uv;
				return o;
			}
			//在hullProgram之前必须设置这些参数,不然会报错
			[domain("tri")]//图元类型,可选类型有 "tri", "quad", "isoline"
			[partitioning("integer")]//曲面细分的过渡方式是整数还是小数
			[outputtopology("triangle_cw")]//三角面正方向是顺时针还是逆时针
			[outputcontrolpoints(3)]//输出的控制点数
			[patchconstantfunc("ConstantHS")]//对应之前的细分因子配置阶段的方法名
			[maxtessfactor(64.0)]//最大可能的细分段数

			//vert顶点程序之后调用,计算细分前的三角形顶点信息
			TessOut hullProgram(InputPatch<v2t, 3> i, uint idx : SV_OutputControlPointID)
			{
				TessOut o;
				o.worldPos = i[idx].worldPos;
				o.uv = i[idx].uv;
				return o;
			}

			//指定每个边的细分段数和内部细分段数
			TessParam ConstantHS(InputPatch<v2t, 3> i, uint id : SV_PrimitiveID)
			{
				TessParam o;
				o.EdgeTess[0] = _EditFactor;
				o.EdgeTess[1] = _EditFactor;
				o.EdgeTess[2] = _EditFactor;
				o.InsideTess = _InsideFactor;
				return o;
			}

			//在domainProgram前必须设置domain参数,不然会报错
			[domain("tri")]
			//细分之后,把信息传到frag片段程序
			t2f domainProgram(TessParam tessParam, float3 bary : SV_DomainLocation, const OutputPatch<TessOut, 3> i)
			{
				t2f o;				
				//线性转换

				float2 uv = i[0].uv * bary.x + i[1].uv * bary.y + i[2].uv * bary.z;
				o.uv = uv;
				float4 worldPos = i[0].worldPos * bary.x + i[1].worldPos * bary.y + i[2].worldPos * bary.z;
				o.worldPos = worldPos;
				o.clipPos = UnityWorldToClipPos(worldPos);
				return o;
			}
            fixed4 frag (t2f i) : SV_Target
            {
                // sample the texture
                fixed4 col = tex2D(_MainTex, i.uv)*_Color;

				return col;
            }
            ENDCG
        }
    }
}

需要注意的地方是:
1.声明处理程序:

#pragma hull hullProgram
#pragma domain domainProgram

2.在hullProgram之前必须设置这些参数,不然会报错

[domain("tri")]//图元类型,可选类型有 "tri", "quad", "isoline"
[partitioning("integer")]//曲面细分的过渡方式是整数还是小数
[outputtopology("triangle_cw")]//三角面正方向是顺时针还是逆时针
[outputcontrolpoints(3)]//输出的控制点数
[patchconstantfunc("ConstantHS")]//对应之前的细分因子配置阶段的方法名
[maxtessfactor(64.0)]//最大可能的细分段数

3.domainProgram前必须设置domain参数,不然会报错

[domain("tri")]

四、根据范围做局部曲面细分

  已经介绍完怎样使用曲面细分了,接下来就是要实现文章一开始说的,根据指定的中心点和范围,做局部的曲面细分。

1、在顶点片段着色器实现局部细分

  由于使用顶点片段着色器做曲面细分,是可以直接设置每个多边形的边和内部的细分数量,所以要实现局部细分也就非常简单了,思路是:
1.获得中心点坐标和范围半径
2.在着色器取得当前顶点的世界坐标,然后判断是否在中心点的半径范围内
3.用一个smoothStep做一个边缘范围过渡,作为细分强度
4.根据计算出的细分强度,设置最终的细分值。

写成代码大概就是这样:

Shader "azhao/GroundTessVF"
{
    Properties
    {
		_MainTex("Texture", 2D) = "white" {}
		_Color("Color", Color) = (1,1,1,1)
		_centerPos("CenterPos", Vector) = (0,0,0,0)
		_minVal("minVal", Float) = 0
		_maxVal("maxVal", Float) = 10
		_factor("factor", Float) = 15
    }
    SubShader
    {
        Tags { "RenderType"="Opaque" }
        LOD 100

        Pass
        {
            CGPROGRAM
            #pragma vertex vert
			//在正常的vertex和fragment之间还需要hull和domain,所以在这里加上声明
			#pragma hull hullProgram
			#pragma domain domainProgram
            #pragma fragment frag


            #include "UnityCG.cginc"
			sampler2D _MainTex;
			float4 _MainTex_ST;
			fixed4 _Color;
			uniform float _minVal;
			uniform float _maxVal;
			uniform float3 _centerPos;
			uniform float _factor;
			struct a2v
			{
				float4 pos	: POSITION;
				float2 uv  : TEXCOORD0;
			};

			struct v2t
			{
				float4 worldPos	: TEXCOORD0;
				float2 uv  : TEXCOORD1;
			};
			struct t2f
			{
				float4 clipPos	       : SV_POSITION;
				float2 uv     : TEXCOORD0;
				float4 worldPos            : TEXCOORD1;
				
			};

			struct TessOut
			{
				float2 uv  : TEXCOORD0;
				float4 worldPos	: TEXCOORD1;
				
			};
			struct TessParam
			{
				float EdgeTess[3]	: SV_TessFactor;//各边细分数
				float InsideTess : SV_InsideTessFactor;//内部点细分数
			};

			
			v2t vert(a2v i)
			{
				v2t o;
				o.worldPos = mul(unity_ObjectToWorld,i.pos);
				o.uv = i.uv;
				return o;
			}
			//在hullProgram之前必须设置这些参数,不然会报错
			[domain("tri")]//图元类型,可选类型有 "tri", "quad", "isoline"
			[partitioning("integer")]//曲面细分的过渡方式是整数还是小数
			[outputtopology("triangle_cw")]//三角面正方向是顺时针还是逆时针
			[outputcontrolpoints(3)]//输出的控制点数
			[patchconstantfunc("ConstantHS")]//对应之前的细分因子配置阶段的方法名
			[maxtessfactor(64.0)]//最大可能的细分段数

			//vert顶点程序之后调用,计算细分前的三角形顶点信息
			TessOut hullProgram(InputPatch<v2t, 3> i, uint idx : SV_OutputControlPointID)
			{
				TessOut o;
				o.worldPos = i[idx].worldPos;
				o.uv = i[idx].uv;
				return o;
			}

			//指定每个边的细分段数和内部细分段数
			TessParam ConstantHS(InputPatch<v2t, 3> i, uint id : SV_PrimitiveID)
			{
				TessParam o;
				float4 worldPos = (i[0].worldPos + i[1].worldPos + i[2].worldPos) / 3;
				float smoothstepResult = smoothstep(_minVal, _maxVal, distance(worldPos.xz, _centerPos.xz));
				float fac = max((1.0 - smoothstepResult)*_factor, 1);
				//由于我这里是根据指定的中心点和半径范围来动态算细分段数,所以才有这个计算,不然可以直接指定变量来设置。
				o.EdgeTess[0] = fac;
				o.EdgeTess[1] = fac;
				o.EdgeTess[2] = fac;
				o.InsideTess = fac;
				return o;
			}

			//在domainProgram前必须设置domain参数,不然会报错
			[domain("tri")]
			//细分之后,把信息传到frag片段程序
			t2f domainProgram(TessParam tessParam, float3 bary : SV_DomainLocation, const OutputPatch<TessOut, 3> i)
			{
				t2f o;				
				//线性转换
				o.worldPos = i[0].worldPos * bary.x + i[1].worldPos * bary.y + i[2].worldPos * bary.z;
				o.clipPos = UnityWorldToClipPos(o.worldPos);
				float2 uv = i[0].uv * bary.x + i[1].uv * bary.y + i[2].uv * bary.z;
				o.uv = uv;
				return o;
			}
            fixed4 frag (t2f i) : SV_Target
            {
                // sample the texture
                fixed4 col = tex2D(_MainTex, i.uv)*_Color;
                return col;
            }
            ENDCG
        }
    }
}

  使用的时候,在C#端中心点改变的时候,传入centerPos,通过调整_maxVal和_minVal,可以控制半径和边缘强度渐变的效果

2、在Surface着色器实现局部细分

  在Surface着色器里面实现曲面细分,需要写的代码很少,我们就使用上面介绍的Fixed类型然后同样的通过传入中心点,还有_maxVal和_minVal,来确定需要细分的范围,实现思路和上面的顶点片段着色器是一样的。
代码会是这样的:

Shader "azhao/FootStepMeshSurface"
{
    Properties
    {
		_MainTex("Texture", 2D) = "white" {}
        _Color ("Color", Color) = (1,1,1,1)
		_centerPos("centerPos", Vector) = (0,0,0,0)
		_minVal("minVal", Float) = 0
		_maxVal("maxVal", Float) = 10
		_factor("factor", Float) = 15
		_footstepRect("footstepRect",Vector) = (0,0,0,0)
		_footstepTex("footstepTex",2D) = "gray"{}
		_height("height" ,Float) = 0.3
		_Glossiness("Glossiness",Float) = 0
		_Metallic("Metallic",Float) = 0

    }
    SubShader
    {
        Tags { "RenderType"="Opaque" }
        LOD 200

        CGPROGRAM
		#include "Tessellation.cginc"
        #pragma surface surf Standard fullforwardshadows vertex:vertexDataFunc tessellate:tessFunction 
        #pragma target 4.6


        struct Input
        {
            float2 uv_texcoord;
        };

        half _Glossiness;
        half _Metallic;
        fixed4 _Color;
		uniform sampler2D _mainTex;
		SamplerState sampler_mainTex;
		uniform float4 _mainTex_ST;
		uniform float _minVal;
		uniform float _maxVal;
		uniform float3 _centerPos;
		uniform float _factor;
		float4 _footstepRect;
		sampler2D _footstepTex;
		float _height;
        UNITY_INSTANCING_BUFFER_START(Props)
        UNITY_INSTANCING_BUFFER_END(Props)

		float RemapUV(float min, float max, float val)
		{
			return (val - min) / (max - min);
		}
		//这里处理细分相关逻辑
		float4 tessFunction(appdata_full v0, appdata_full v1, appdata_full v2)
		{
			float3 worldPos = mul(unity_ObjectToWorld, (v0.vertex + v1.vertex + v2.vertex) / 3);
			float smoothstepResult = smoothstep(_minVal, _maxVal, distance(worldPos.xz, _centerPos.xz));
			float fac = max((1.0 - smoothstepResult)*_factor, 0.1);
			return fac;
		}

		void vertexDataFunc(inout appdata_full v)
		{
			float4 worldPos = mul(unity_ObjectToWorld, v.vertex);
			float2 footUV = float2(RemapUV(_footstepRect.x, _footstepRect.z, worldPos.x), RemapUV(_footstepRect.y, _footstepRect.w, worldPos.z));
			float4 footstepCol = tex2Dlod(_footstepTex, float4(footUV, 0, 0.0));
			float addVal = (footstepCol.r * 2 - 1)*footstepCol.a*_height;
			v.vertex.y += addVal/100;
		}

        void surf (Input IN, inout SurfaceOutputStandard o)
        {
            fixed4 c =  _Color;
			float2 uv_mainTex = IN.uv_texcoord * _mainTex_ST.xy + _mainTex_ST.zw;
			float4 mainTex = tex2D(_mainTex, uv_mainTex);
            o.Albedo = mainTex.rgb*c.rgb;
            o.Metallic = _Metallic;
            o.Smoothness = _Glossiness;
            o.Alpha = c.a;
        }
        ENDCG
    }
    FallBack "Diffuse"
}

3、选择哪种方式的Shader实现会比较好?

  这个问题是没有直接答案的,需要根据自己的实际情况来选择。
  顶点片段着色器的优点是可控性强,自己可以随意的定义各种光照模型、修改细节的效果,缺点是写法麻烦。
  Surface着色器的优点是写法简单,缺点是可控性比较弱一点。
  我个人是习惯用顶点片段着色器的,因为我比较的喜欢自己控制各个环节的细节。所以在接下来的例子里面,我还是会用顶点片段着色器的写法来继续做这个地面交互效果的demo。不过其实如果顶点片段着色器上知道了怎样实现,在Surface着色器上面实现的过程就更简单了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1170049.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据分析师的就业前景看好

IT行业哪个方向比较好就业? 目前IT行业的发展速度非常的快&#xff0c;很多领域都已经开始和IT技术进行紧密的结合&#xff0c;这也带来了很多岗位的空缺。那么就一起来说说&#xff0c;IT行业里&#xff0c;哪些方向会更好就业。 大数据时代&#xff0c;呼唤数据分析师。 …

Java数组小练习求出数组中的最大值

加油&#xff0c;新时代打工人&#xff01; Java基础八之数组的定义和获取元素 package demo;/*** author wenhao* date 2023/11/04 10:47* description 数组练习*/ public class ArrDemo {public static void main(String[] args) {//求一个数组中的最大值int [] arr {66,12…

SpringBoot 将 jar 包和 lib 依赖分离,dockerfile 构建镜像

前言 Spring Boot 是一个非常流行的 Java 开发框架&#xff0c;它提供了很多便利的功能&#xff0c;例如自动配置、快速开发等等。 在使用 Spring Boot 进行开发时&#xff0c;我们通常会使用 Maven 或 Gradle 进行项目构建。 本文将为您介绍如何使用 Maven 将 Spring Boot …

「Verilog学习笔记」四选一多路器

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 分析 通过波形示意图我们可以发现&#xff0c;当sel为0&#xff0c;1&#xff0c;2时&#xff0c;输出mux_out分别为d3&#xff0c;d2&#xff0c;d1&#xff0c;那么sel3…

【触想智能】工业显示器上市前的检测项目分享

工业显示器在上市前&#xff0c;需要做一项重要的工作&#xff0c;那就是工业显示器出厂前的产品可靠性检测。 工业显示器选择的测试项目相比商用端更为严格&#xff0c;常见的性能测试项目包括高温老化、防尘防水、电磁静电干扰、防摔防撞等&#xff0c;在工业级应用领域&…

PS2024免费磨皮滤镜Portraiture插件下载

Portraiture 4是一款适用于LR的人像智能磨皮美化滤镜插件&#xff0c;操作简便、省去了选择蒙版和逐步像素处理的繁琐流程&#xff0c;帮助您实现高效的肖像修饰。快速对照片中皮肤、头发、眉毛等部位进行美化&#xff0c;无需手动调整&#xff0c;大大提高P图效率。全新4版本&…

《程序员必须要做副业》之公众号流量主如何快速做起?

1 如何快速生成文章 公众号本身还是一个内容平台&#xff0c;最核心的还是内容生产&#xff0c;谁能快速生成优质的内容&#xff0c;谁就占据了优势。 目前使用讨很多AT具&#xff0c;包含chatapt40.new bing.notion.claude1.claude2&#xff0c;还有一些国内的模型比如讯飞火…

UI设计感蓝色商务数据后台网站模板源码

蓝色商务数据后台网站模板是一款适合网站模板下载。提示&#xff1a;本模板调用到谷歌字体库&#xff0c;可能会出现页面打开比较缓慢。 演示下载 qnziyw点cn/wysc/qdmb/20852点html

PCL点云处理(007)-Ransac

随机抽样一致性算法RANSAC(Random sample consensus)是一种迭代的方法来从一系列包含有离异值的数据中计算数学模型参数的方法。 RANSAC算法本质上由两步组成&#xff0c;不断进行循环&#xff1a; 从输入数据中随机选出能组成数学模型的最小数目的元素&#xff0c;使用这些元素…

一周IT热门快讯 | 本周互联网界发生了啥?

一、微信新增独立发送按钮 网友&#xff1a;喜大普奔&#xff01;终于盼到了 10月31日&#xff0c;iOS版本微信更新了8.0.43版本&#xff0c;新增了一个换行按钮。 开启后&#xff0c;iPhone自带输入法原来的“发送”变成了“换行”&#xff0c;对话框右侧是发送键&#xff…

SOLIDWORKS参数化设计之部分打包 慧德敏学

参数化设计就是通过主参数来驱动整个模型的变化&#xff0c;类似于SOLIDWORKS的方程式中&#xff0c;使用全局变量来控制模型其它参数的变化&#xff0c;因此要做参数化就必须要确定好主参数以及变化逻辑。 我们之前介绍过SOLIDWORKS参数化设计软件-SolidKits.AutoWorks&#…

2023最新C语言编程练习题大全(一)

目录 一、初识C语言1.1 第一个C语言程序1.2 一个完整的C语言程序1.3 输出名言1.4 计算正方形的周长 二、一个简单的C语言程序2.1 输出一个正方形2.2 输出直角三角形2.3 设计一个简单的求和程序2.4 求10!2.5 三个数由小到大排序2.6 猴子吃桃2.7 阳阳买苹果 一、初识C语言 1.1 第…

软文如何找准用户痛点?媒介盒子分享

软文推广的必要因素就是找准用户痛点并放大痛点&#xff0c;这里的痛点需要与用户日常生活息息相关&#xff0c;在这里媒介盒子分享三个找准用户痛点的技巧&#xff1a; 一、挖掘实际需求 从用户视角分析&#xff0c;对用户的应用场景深入了解&#xff0c;挖掘用户的实际需求。…

Java如何快速读取解析JSON数据(文件),获取想要的内容?

手打不易&#xff0c;如果转摘&#xff0c;请注明出处&#xff01; 注明原文&#xff1a;https://zhangxiaofan.blog.csdn.net/article/details/132764186 目录 前言 准备工作 Json数据&#xff08;示例&#xff09; 解析Json文件 第一步&#xff1a;创建一个空类 第二步…

0-1背包 完全背包 + 至多/恰好/至少 + 空间优化 + 常见变形题(实战力扣题)

&#xff08;一&#xff09;01背包 1.回溯三问 # capacity:背包容量 # w[i]: 第 i 个物品的体积 # v[i]: 第 i 个物品的价值 # 返回:所选物品体积和不超过 capacity 的前提下&#xff0c;所能得到的最大价值和 def zero_one_knapsack(capacity:int,w:List[int],v:List[int])…

安装虚拟机后ifconfig不显示IP地址及设置静态IP地址ssh连接

ifconfig不显示IP地址 可以看到ens160并没有显示IP地址&#xff0c;刚刚装好的虚拟机是很干净的&#xff0c;连网卡都没有&#xff0c;我们修改一个配置文件&#xff1a; vim /etc/sysconfig/network-scripts/ifcfg-ens160将文件中的onboot修改为yes&#xff0c;即启动时需不需…

数字频带传输——多进制数字调制及MATLAB仿真

文章目录 前言一、MASK&#xff08;一维信号&#xff09;1、MASK 简介2、MASK 矢量表示 二、MPSK&#xff08;二维信号&#xff09;1、MPSK 简介2、MPSK 矢量表示 三、MQAM&#xff08;二维信号&#xff09;1、MQAM 简介2、MQAM 信号的矢量表示 四、正交 MFSK&#xff08;M维信…

YB2503HV 100V 3A SOP8内置MOS 高效率降压IC(昱灿)

YB2503HV 100V 3A SOP8内置MOS 高效率降压IC 描述&#xff1a; YB2503HV是单片集成可设定输出电流的开关型降压恒压驱动器&#xff0c;可工作在宽输入电压范围具有优良的负载和线性调整度。安全保护机制包括每周期的峰值限流、软启动、过压保护和温度保护。YB2503HV需要非常少…

5W2H分析法:全面思考和解决问题的实用工具

5W2H分析法又叫七问分析法&#xff0c;创于二战中美国陆军兵器修理部。发明者用五个以W开头的英语单词和两个以H开头的英语单词进行设问&#xff0c;发现解决问题的线索&#xff0c;寻找发明思路&#xff0c;进行设计构思&#xff0c;从而搞出新的发明项目。5W2H简单、方便&…

速拿offer,超全自动化测试面试题+答案汇总,背完还怕拿不到offer?

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、你会封装自动化…