代码随想录Day36 动态规划05 LeetCode T1049最后一块石头的重量II T494 目标和 T474 一和零

news2025/1/11 10:13:23

前言 : 动规五部曲

理论基础  : 代码随想录Day34 LeetCode T343整数拆分 T96 不同的二叉搜索树-CSDN博客

1.明白dp数组的含义

2.明白递推公式的含义

3.初始化dp数组

4.注意dp数组的遍历顺序

5.打印dp数组排错

LeetCode T1049 最后一块石头的重量II

题目链接:1049. 最后一块石头的重量 II - 力扣(LeetCode)

题目思路:

这题我们仍然采用动规五部曲来写,这题和昨天的那一道分割等和子集类似,我们先对数组求和得到sum,然后取其的一半+1作为dp数组的大小,最后我们只需要求得sum/2作为容量的背包能装的最大容量,用sum减去两倍的dp[sum/2]即可,有人问为什么这样做,我举个例子

为什么要减去两倍的dp[sum/2]呢,其实就是求两边到中间的距离的,因为是左边和右边所以减了两次

想明白了这个,我们开始使用动规五部曲来操作了

1.明白dp数组的含义

dp[j]的含义仍然是j容量的背包能装的最大价值,这里的最大价值也就是最大重量了

2.明白递推公式的含义

这里的stones的价值和重量是相等的

dp[j] = Math.max(dp[j],dp[j-stones[i]]+stones[j])

有人始终不明白这里的dp[j]后面为什么求dp[j]和dp[j-stones[i]]+stones[j]的最大值,为啥跟自己求最大值,其实这里后面的dp[j]还保存了上一层的dp[j]的大小,因为没有被更新过,所以其实不是跟自己比

3.初始化dp数组

这里因为石头的重量都是大于0的,我们全部初始化为0即可

4.注意dp数组的遍历顺序

先遍历物品,后遍历背包即可,不明白的看我的上一篇博客

代码随想录Day34 LeetCode T343整数拆分 T96 不同的二叉搜索树-CSDN博客

5.打印dp数组排错

如果遇到所求不符合了,可以去idea打印出数组来查看,这里建议使用二维数组的方式查看,更加直观

题目代码:(一维数组版本)

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for(int i: stones){
            sum+=i;
        }
        int  target = sum/2;
        int[] dp = new int[target+1];
        for(int i = 0;i<stones.length;i++){
            for(int j = target;j>=stones[i];j--){
                dp[j] = Math.max(dp[j],dp[j-stones[i]]+stones[i]);
            }
        }
        return sum-dp[target]-dp[target];

    }
}

题目代码:(二维数组版本)

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for(int i: stones){
            sum+=i;
        }
        int  target = sum/2;
        int[][] dp = new int[stones.length][target+1];
        for(int i = stones[0];i<=target;i++){
            dp[0][i] = stones[0];
        }
        for(int i = 1;i<stones.length;i++){
            for(int j = 1;j<=target;j++){
                //不放
                if(j<stones[i]){
                    dp[i][j] = dp[i-1][j];
                }
                //放
                else{
                    dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-stones[i]]+stones[i]);
                }
            }
        }
        return sum-dp[stones.length-1][target]*2;

    }
}

LeetCode T494 目标和

题目链接:494. 目标和 - 力扣(LeetCode)

题目思路:

我们也将数组按正负号划分为两个阵营,此时我们是不是只需要求一边的结果,另一边自然而然就确定了,所以这道题我们就有这样两个表达式

left//表示正的阵营
right//表示负的阵营
left + right = sum
left - right = target
left = (target+sum)/2

这里我们就知道了背包的容量为left的大小对应的表达式

这里如果我们的所求target>sum或者小于-sum都是不可能达成的

还有如果遇见target和sum的和为奇数也是不可能的,直接返回0,这是因为奇数/2是向下取整的,举个例子:

假如我的nums是[1,1,1,1,1],要求得到2

这里left明显等于3

而三个1加上两个-1得到是1,并不符合题意,实际上这个选择是无解的

接下来我们继续按照动规五部曲来走一遍

1.明白dp数组的含义

这里的dp[j]表示,容量为j的背包装满有多少种方法

2.明白递推公式的含义

dp[j] +=dp[j-nums[i]]

因为这里要求方法有多少种,举个例子

dp[5] = dp[4] + 1 其实和斐波那契数列和爬楼梯有点类似,可以相成到达5的方法数就是4的方法数+后面nums[j-nums[i]]的方法数

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
  • 实际上求dp[5],就是把他们都累加起来

3.初始化dp数组

这里初始化dp[0] = 1,我们不要根据字面关系去理解,直接带入上面的公式理解

left = (target+sum)/2,此时left = 0,这就是一种方法

所以dp[0]要初始化为1而不是0,因为后面都得靠dp[0]推导出来,如果它为0后面的结果都是0

4.注意dp数组的遍历顺序

先遍历物品,后遍历背包

5.打印dp数组排错

题目代码:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for(int i:nums){
            sum += i;
        }
        if(target>sum || target<-sum){
            return 0;
        }
        if((target + sum) % 2 == 1){
            return 0;
        }
        int bagSize = (target+sum)/2;
        int[] dp = new int[bagSize+1];
        dp[0] = 1;
        for(int i = 0;i<nums.length;i++){
            for(int j=bagSize;j>=nums[i];j--){
                dp[j] += dp[j-nums[i]];
            }
        }
        return dp[bagSize];

    }
}

LeetCode T474 一和零

题目链接:474. 一和零 - 力扣(LeetCode)

题目思路:

这道题也是一个背包问题,虽然有点抽象,下面我们开始用动规五部曲来分析

1.明白dp数组的含义

这里的dp数组的含义就是m个0和n个1能包含的最大子集,也就是能装下m个0和n个1的背包能存放的最大物品数

2.明白递推公式的含义

我们从最初的0-1背包开始递推

dp[j] = Math.max(dp[j],dp[j - weight[i]]+value[i])

这里我们的重量其实就是i和j的个数,我们使用x代表这个物品中的'0'的个数,y代表1的个数

那么此时就转换成了

dp[i][j] = Math.max(dp[i][j],dp[i-x][j-y]+1)

因为此时如果能放进去,也就是加了1个物品

3.初始化dp数组

此时dp[0][0] 很轻易就能知道是0,为了我们的递推公式能顺利的覆盖结果,其他的也初始化为0

4.注意dp数组的遍历顺序

和之前一样,先遍历物品,再遍历背包即可

5.打印dp数组排错

题目代码:

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        //dp数组含义
        int[][] dp = new int[m+1][n+1];
        //初始化,全为0
        for(String s:strs){
            int x = 0,y = 0;
            for(char c:s.toCharArray()){
                if(c == '0'){
                    x++;
                }else{
                    y++;
                }
            }
            for(int i = m;i>=x;i--){
                for(int j = n;j>=y;j--){
                    dp[i][j] = Math.max(dp[i][j],dp[i-x][j-y]+1);
                }
                
            }
        }
        return dp[m][n];

    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1168931.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode:117. 填充每个节点的下一个右侧节点指针 II(C++)

117. 填充每个节点的下一个右侧节点指针 II 题目描述&#xff1a; 给定一个二叉树&#xff1a; struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针&#xff0c;让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点&#xff0c;则将…

Promise的并发控制 - 从普通并发池到动态并发池

一、场景 给你一个有200个URL的数组&#xff0c;通过这些URL来发送请求&#xff0c;要求并发请求数不能超过五个。 这是一道很常考的面试题&#xff0c;接下来让我们来学习一下Promise并发控制 二、普通并发池的实现 主要思路就是&#xff0c;判断当前队列是否满&#xff0c;…

【IDEA】在工具栏设置快速创建包和类的图表

页面效果&#xff1a; 操作步骤&#xff1a; 设置 --> 外观与行为 --> 菜单与工具栏 --> 点击 主工具栏 --> 点击 ---- --> 点击 号 --> 添加操作 主菜单 --> 文件 --> 文件打开操作 --> 打开项目操作 --> 新建 --> 往下找 找到 clas…

单行自动横向滚动——css实现

效果 封装组件 <template><div ref"container" class"scroll-area"><divref"content":class"[isScroll ? scroll : no-scroll]":style"{ color: fontColor }">{{ content }}</div></div> &…

c++值deque容器

1.deque容器介绍 deque 是 double-ended queue 的缩写&#xff0c;又称双端队列容器。deque容器支持从头部和尾部双端插入、删除数据。与vector容器不同的是&#xff0c;vector容器是一段连续的空间&#xff0c;而deque没有所谓容量的概念&#xff0c;因为它是动态的以分段连续…

Spring Boot 常见面试题

目录 1.Spring Boot 快速入门什么是 Spring Boot&#xff1f;有什么优点&#xff1f;Spring Boot 与 Spring MVC 有什么区别&#xff1f;Spring 与 Spring Boot 有什么关系&#xff1f;✨什么是 Spring Boot Starters?Spring Boot 支持哪些内嵌 Servlet 容器&#xff1f;如何设…

掌握RESTful API:规范与设计详解

前言 RAML (RESTful API Modeling Language) 和 OAS (OpenAPI Specification) 都是用于描述和定义 RESTful API 的规范。它们分别提供了不同的功能和优势。 RAML&#xff08;RESTful API Modeling Language&#xff09;&#xff1a; RAML简介 RAML&#xff08;RESTful API M…

CSC公派研究生项目|北语北外2024年寒假英语培训班正在招生

北京语言大学出国部、北京外国语大学出国部近期发布了2024年寒假“国家建设高水平大学公派研究生项目”英语培训的通知&#xff0c;知识人网小编特归纳整理&#xff0c;供有需求的同学参考。 北京语言大学 我部将于2024年寒假举办“国家建设高水平大学公派研究生项目”英语培训…

银行账单转换beancount

用了beancount来记账后&#xff0c;发现每月的账单手动记是一件极其麻烦的事情。 然后再github搜索一通后&#xff0c;有double-entry-generator&#xff08;https://github.com/deb-sig/double-entry-generator&#xff09;能转换支付宝/微信的账单&#xff0c;但是没有自己用…

基于STM32F412RET6的智能桶硬件设计

一、智能桶功能需求&#xff1a; 智能桶是一直采用Cortex-M4 嵌入式平台&#xff0c;搭载NB-IotTO通讯模组、智能称重采集、智能门锁监控以及温度监测等装置。主要功能如下&#xff1a; ▲ 具有GPS定位功能&#xff0c;可以通过后台APP实时定位智能桶的位置。 ▲ 具有温度监测功…

大厂面试题-Netty中Reactor模式的理解

Reactor其实是在NIO多路复用的基础上提出的一个高性能IO设计模式。 它的核心思想是把响应IO事件和业务处理进行分离&#xff0c;通过一个或者多个线程来处理IO事件。 然后把就绪的事件分发给业务线程进行异步处理。 Reactor模型有三个重要的组件&#xff1a; Reactor&#…

基于单片机的可穿戴个人健康监测仪-智能手环

收藏和点赞&#xff0c;您的关注是我创作的动力 文章目录 概要 一、方案的设计与论证2.1设计任务及要求2.2 模块技术和方法综述2.3 设计可能遇到的困难 二、 系统总体框架3.1 硬件设计 三 软件部分4.1 主程序流程框 四、 结论五、 文章目录 概要 近几年智能化的不断发展&#…

GEE——提取制定多波段影像的属性值(按照制定属性名称和属性值)输出格式为矢量格式

简介: 这里我们很多时候,需要提取制定影像,或者多波段影像制定区域的值,这里有一个问题是我们一般输出的结果仅仅是一个字典类型的对象,而我们不知道如何按照一个矢量输入,这里我们首先要做的就是进行多波段值在制定区域的提取,随后就是分别对其新的字典的键、值的设定…

Leetcode76最小覆盖子串

思路&#xff1a;滑动窗口思想 1. 滑动窗口是什么&#xff1a;用一个滑动窗口为覆盖目标子串的字符串 2.怎么移动窗口&#xff1a;当不满足覆盖时右指针移动扩大范围&#xff0c;当覆盖了就移动左指针缩减范围直到再次不覆盖 3. 怎么判断是否覆盖&#xff1a;这里使用两个哈…

Qt封装的Halcon显示控件,支持ROI绘制

前言 目前机器视觉ROI交互控件在C#上做的比较多&#xff0c;而Qt上做的比较少&#xff0c;根据作者 VSQtHalcon——显示图片&#xff0c;实现鼠标缩放、移动图片的文章&#xff0c;我在显示和移动控件的基础上&#xff0c;增加了ROI设置功能&#xff0c;并封装成了一个独立的Q…

记录一次normal diskgroup添加磁盘组操作

客户的一个磁盘组空间快满&#xff0c;需要添加一下磁盘&#xff0c;磁盘组的冗余模式为normal&#xff0c;本来觉得是一件不难的事情&#xff0c;在添加过程中还是遇到了一些问题。 本来为2个500G的磁盘组成的normal模式磁盘组&#xff0c;目前可用空间只剩下170G左右的空间&…

【多线程】线程池总结带你详细了解线程池

文章目录 线程池标准库中的线程池Executors 创建线程池的几种方式ThreadPoolExecutor创建线程池 模拟实现线程池 线程池 线程池是一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监督管理者分配…

基于单片机的自动感应门设计

博主主页&#xff1a;单片机辅导设计 博主简介&#xff1a;专注单片机技术领域和毕业设计项目。 主要内容&#xff1a;毕业设计、简历模板、学习资料、技术咨询。 文章目录 主要介绍一、自动感应门设计的功能概述二、系统总体方案2.1系统的总体计划2.2元器件的介绍2.2.1单片机的…

全局安装 vue-cli 报错 Error: EPERM: operation not permitted, open

原因&#xff1a;没有权限 解决方法&#xff1a;CMD 点击右键 以管理员身份运行。