基于学校优化算法的无人机航迹规划-附代码

news2025/1/11 21:59:16

基于学校优化算法的无人机航迹规划

文章目录

  • 基于学校优化算法的无人机航迹规划
    • 1.学校优化搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用学校优化算法来优化无人机航迹规划。

1.学校优化搜索算法

学校优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/121052583

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得学校优化搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用学校优化算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述
在这里插入图片描述

从结果来看,学校优化算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1167296.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL 分组后统计 TopN 思路优化

一、表信息 表结构如下: CREATE TABLE score (id int(11) NOT NULL AUTO_INCREMENT,name varchar(255) DEFAULT NULL,score int(11) DEFAULT NULL,PRIMARY KEY (id) ) ENGINEInnoDB AUTO_INCREMENT1746687 DEFAULT CHARSETutf8;使用存储过程生成十万条测试数据&am…

Elasticsearch:使用 ES|QL

在我之前的文章 “Elasticsearch:ES|QL 查询语言简介”,我对 ES|QL 做了一个简单的介绍。在今天的文章中,我们来描述如何使用 ES|QL。 REST API 这个用来返回 ES|QL (Elasticsearch qyery language) 的查询结果。它具有如下的格式&#xff1…

MongoDB安全及系例全教程

一、系列文章目录 一、MongoDB安装教程—官方原版 二、MongoDB 使用教程(配置、管理、监控)_linux mongodb 监控 三、MongoDB 基于角色的访问控制 四、MongoDB用户管理 五、MongoDB基础知识详解 六、MongoDB—Indexs 七、MongoDB事务详解 八、MongoDB分片教程 九、Mo…

用扩散AI生成的合成数据的质量评估方法【4个指标】

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D场景编辑器 为了生成有用的图像数据集,我们使用真实世界的照片数据集作为指南针,探索即时工程的艺术。 我们的稳定扩散(…

PPT模板,免费下载!

找免费PPT模板就上这6个网站,各种模板、素材都能找到,质量还很高,赶紧收藏起来! 1、菜鸟图库 https://www.sucai999.com/search/ppt/0_0_0_1.html?vNTYwNDUx 菜鸟图库网有非常丰富的免费素材,像设计类、办公类、自媒…

红海云签约中国煤科信息公司,数智引领科技型国企人力资源数字化变革

中煤科工集团信息技术有限公司(以下简称“中国煤科信息公司”)隶属于中国煤炭科工集团,作为中国煤科核心软件的研发中心、数据技术中心、内部信息化支撑中心,是中国煤科加快智能矿山建设和数字化转型的核心力量。 基于对数字化转…

软件设计模式原则(一)迪米特法则

开一个小专题——详细总结一下软件设计模式原则,这部分在《软计》和《java设计模式》中算是很重要的知识点,值得展开详细讲解一下~首先介绍的是【迪米特法则】 一.定义 迪米特法则又称为最少知识原则,其定义为:一个软件实体应当尽…

vue使用JsBarcode生成条形码

在工作中&#xff0c;有一个需求是接口返回的订单号生成条形码&#xff0c;如图&#xff1a; 1.安装依赖 yarn add jsbarcode2.引入 在script标签中引入 import JsBarcode from jsbarcode 3.使用 this.$refs.a.src的值为条形码的地址。 <template><div><img…

linux下多机器ssh免密码登录配置

20,21,22,23等4台机器配置ssh免密登陆 确认sshd配置 查看/etc/ssh/sshd_config文件&#xff0c;确认如下配置没有被注释掉&#xff1a; AuthorizedKeysFile .ssh/authorized_keys每一台机器修改hosts配置主机名&#xff08;可选&#xff09; 执行ssh命令&#xff0c;如…

积分球测试粉末反射率

积分球测试粉末主要是基于光在积分球内的反射和混合。具体来说&#xff0c;当光线进入积分球时&#xff0c;它将在球的内表面上进行反射。由于积分球的内表面是高反射材料&#xff0c;所以大部分光线将被反射&#xff0c;而不会逃逸出球体。在积分球内&#xff0c;光线经过多次…

基于51单片机的全自动洗衣机系统设计

**单片机设计介绍&#xff0c;基于51单片机的全自动洗衣机系统设计(仿真、程序、论文) 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于51单片机的全自动洗衣机系统是一种集成控制、传感、显示等功能于一体的智能洗衣机系统&a…

Security ❀ UDP/TCP传输层常见DOS攻击详解

文章目录 1. UDP协议基础2. UDP Flood2.1. 攻击原理2.2. 防护方法 3. TCP三次握手和四次挥手3.1. 三次握手3.2. 四次挥手 4. SYN Flood4.1. 攻击原理4.2. 防护方法 5. SYN-ACK Flood5.1. 攻击原理5.2. 防护方法 6. ACK Flood6.1. 攻击原理6.2. 防护方法 7. FIN/RST Flood7.1. 攻…

来可电子基于UDS的ECU刷写方案

车辆电子控制单元&#xff08;ECU&#xff09;的刷写方式也正在发生重大变化。传统的ECU刷写方法通常使用CAN卡连接电脑进行&#xff0c;现在越来越多的汽车商家和软件开发人员开始采用基于总线UDS来进行ECU刷写。 1、通过我们LKmast上位机软件编写配置刷写步骤 2、导入到我们…

python将图片序列保存成gif

这里用到的模块是imageio。用imageio.mimsave即可将图片序列保存成gif动态图。以下是本人编写的小实验&#xff1a; import cv2 import imageiopaths ["./images/0001.png", "./images/0002.png", "./images/0003.png", ...] frames [] for i…

瑞禧生物分享纳米粉体~二硫化钼粉体 MoS2 纯度:99% 纳米二硫化钼(MoS2)

二硫化钼粉体 名称&#xff1a;二硫化钼粉体 纯度&#xff1a;99% 外观&#xff1a;粉末 纳米二硫化钼(MoS2)粉体硫化钼粉体 二硫化铝化学性质稳定、热稳定性好 、摩擦系数低 、润滑作用优 良且在较为苛 刻的工作环境下能保持 良好的摩擦性能因此二硫化铝被广泛应用于固体润…

一键报警可视对讲管理机10寸触摸屏管理机

一键报警可视对讲管理机10寸触摸屏管理机 一、管理机技术指标&#xff1a; 1、10寸LCD触摸屏&#xff0c;分辨率1024*600&#xff1b; 2、摄像头1200万像素 3、1000M/100M自适应网口&#xff1b; 4、按键设置&#xff1a;报警/呼叫按键&#xff0c;通话/挂机按键&#xff0…

count+group by

一、count()函数 1、count(*) 把所有的行数都查询出来&#xff0c;除非该行中所有的数据为null SELECTCOUNT(*) FROMemployees结果&#xff1a;107 2、count(commission_pct) 把指定列中所有的行数查出来&#xff0c;只要一行为null&#xff0c;那就不计数 SELECTCOUNT(com…

【Qt-22】Qt乱码问题解决

最近在Qt项目中遇到TCP通信接收数据乱码的问题&#xff0c;很是苦恼&#xff0c;经过多次尝试&#xff0c;终于得以解决。 感谢Qt TcpSocket 传递数据乱码显示_qt中socket接受到的客户端数据显示不出来-CSDN博客 彻底解决Qt中文乱码以及汉字编码的问题(UTF-8/GBK)_XX風的博客…

采购供应链思维导图

供应链采购&#xff0c;是指企业根据生产需要&#xff0c;通过与供应商签订合同&#xff0c;由供应商提供原材料、零部件、包装材料等&#xff0c;企业负责产品的制造&#xff0c;并将产品销售给用户的一种交易方式。 供应链管理 横向:采购把东西买进来&#xff0c;生产去加工增…