【音视频 | Ogg】Ogg封装格式详解——包含Ogg封装过程、数据包(packet)、页(page)、段(segment)等

news2024/11/25 6:41:30

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀
🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C++、数据结构、音视频🍭
🤣本文内容🤣:🍭介绍Ogg文件格式🍭
😎金句分享😎:🍭子曰:见贤思齐焉,见不贤而内自省也。——《论语·里仁篇》。意思是,看见德才兼备的人就向他学习,希望能向他看齐;看见不贤的人,就反省自己有没有和他一样的缺点,有要改正。🍭

文章未经允许,不许转载 !!!

目录

  • 🎄一、Ogg 概述
  • 🎄二、Ogg 支持的编码格式
  • 🎄三、Ogg 基础知识
    • ✨3.1 Ogg 相关术语
    • ✨3.2 Ogg 物理比特流类型
    • ✨3.3 Ogg 封装过程
  • 🎄四、Ogg 文件结构
    • ✨4.1 Ogg 页(page)格式
    • ✨4.2 Ogg 封装文件解析
  • 🎄五、读取Ogg文件的C语言代码
  • 🎄六、总结


在这里插入图片描述

🎄一、Ogg 概述

Ogg是一个自由且开放标准的多媒体文件格式,由Xiph.Org基金会所维护。Ogg格式并不受到软件专利的限制,并设计用于有效率地流媒体和处理高质量的数字多媒体。

与大多数容器格式一样,它封装了原始的压缩数据,并允许在一种方便的格式中交错存储音频和视频数据。

Ogg 这个词汇通常意指Ogg Vorbis此一音频文件格式,也就是将Vorbis编码的音效包含在Ogg的容器中所成的格式。在以往,.ogg 此一扩展名曾经被用在任何Ogg支持格式下的内容,但在2007年,Xiph.Org 基金会为了向后兼容的考虑,提出请求,将.ogg只留给Vorbis格式来使用。 Xiph.Org基金会决定创造一些新的扩展名和媒体格式来描述不同类型的内容,像是只包含音效所用的.oga,包含或不含声音的影片(涵盖 Theora)所用的.ogv和程序所用的.ogx

更多关于Ogg的资料可以到Ogg官网学习:https://xiph.org/ogg/

描述Ogg封装格式的 RFC3533 文档:https://www.xiph.org/ogg/doc/rfc3533.txt 或 https://datatracker.ietf.org/doc/html/rfc3533

原文链接:https://blog.csdn.net/wkd_007/article/details/134150061

在这里插入图片描述

🎄二、Ogg 支持的编码格式

Ogg意指一种文件格式,可以纳入各式各样自由和开放源代码的编解码器,包含音效、视频、文字(像字幕)与元数据的处理。
下面是Ogg支持的编码格式:

  • 音频

    • 有损
      • Speex:以低比特率处理语音数据(〜2.1-32 kbit / s /通道)
      • Vorbis:处理中高级可变比特率(每通道≈16-500kbit / s)的一般音频数据
      • Opus:以低和高可变比特率处理语音,音乐和通用音频(每通道≈6-510kbit / s)
    • 无损
      • FLAC:处理文件和高保真音频数据。
    • 未压缩
      • OggPCM:处理未压缩的PCM音频。它与WAV大致相当[5]。
  • 视频

    • 有损
      • Theora:基于On2的VP3,它的目标是与MPEG-4视频(例如,使用DivX或Xvid编码),RealVideo或Windows Media Video进行竞争。
      • Daala:正在开发的视频编码格式。
      • Dirac:由BBC开发的免费开放视频格式。使用小波编码[6]。
      • Tarkin:实验项目,现在过时的视频编解码器在2000年,2001年和2002年开发利用离散小波变换的三个维度的宽度,高度和时间。[7][8][9]。在Theora成为视频编码的主要焦点之后,已被搁置(2002年8月)[10]。
    • 无损
      • Dirac:Dirac规范的一部分涵盖无损压缩。
      • Daala:正在开发的视频编码格式。
  • 文本

    • Writ:用于嵌入字幕或字幕的文本编解码器的草稿不完整,于2007年停止[11]。
    • CMML:用于定时元数据,字幕和格式的文本/应用编解码器。
    • Annodex:CSIRO开发的免费开源标准,用于注释和索引网络媒体。
    • OggKate:最初设计用于卡拉OK和文本的重叠编解码器,可以在Ogg中复用。

在这里插入图片描述

🎄三、Ogg 基础知识

✨3.1 Ogg 相关术语

  • 物理比特流:Ogg封装的结果,被称为物理(Ogg)比特流,也就是说.ogg文件属于一个物理比特流。
  • 逻辑比特流:Ogg封装了一个或多个编码器创建的比特流,称为 逻辑比特流,例如:Vorbis编码的流,Theora编码的流等。
    每个逻辑比特流都以一个特殊的起始页(bos=beginning of stream)开始,并以一个特定的页(eos=end of stream)结束。
  • 分包(packet):Ogg封装过程中,逻辑比特流会被拆分为一系列数据包(packet),它们不包含边界信息地串在一起。
  • 页(page):页(page)是Ogg物理比特流的基本组成单位。Ogg比特流由一个个大小可变的页(page)组成,页的大小通常为4-8 kB,最大65307字节。
  • 段(segments):由于页的最大大小约为64k字节,封装时有些数据包(packet)太大,需要存在几个页里。为了简化过程,Ogg将每个数据包划分为255字节长的块和最后一个较短的块,这些块被称为“Ogg段”(Ogg Segments)。假设一个数据包(packet)大小为520字节,那么它会被分成三个段,大小分别为:255字节、255字节、10字节。
    (疑问:有没有可能有些数据包很小,使得一页中包含很多个数据包?)

✨3.2 Ogg 物理比特流类型

  • 分组(Grouping):分组(Grouping)定义了如何在同一物理比特流中逐页交错多个逻辑比特流。例如,在同一比特流中将视频流和音频流交错存储。
  • 链接(Chaining):完整的逻辑比特流被连接在一起。

看下图例子加深理解:在这个例子中,有两个链接的物理比特流,第一个是由三个逻辑比特流A、B和C组成的分组流。第二个物理比特流D链接在分组比特流的末尾之后,分组比特流在其所有分组逻辑比特流的最后一个eos页之后结束。
在这里插入图片描述

✨3.3 Ogg 封装过程

Ogg 封装过程:
1、编码器提供的比特流作为“分包”(Packets)移交给Ogg,分包边界(packet boundaries)取决于编码格式;
2、Ogg封装过程将数据包分割成若干段;
3、将一组连续的段(segments)包装成一个可变长度的页面(page);
4、最后将各个页(page)混合组成一个Ogg物理比特流。

在这里插入图片描述
上图是Ogg封装过程的例子:

  • 1、编解码器提供的部分比特流细分为数据包。
  • 2、Ogg封装过程将数据包分割成若干段。本例中的数据包相当大,因此数据包1被分为5个段,其中4个段有255个字节,最后一个较小。数据包2分为4个段,其中3个段有255个字节,最后一个非常小。数据包3分为两个段。
  • 3、封装过程会创建页面,在本例中页面非常小。页面1由数据包1的前三个段组成,页面2包含数据包1中剩余的两个段,页面3包含数据包2的前三页。
  • 4、最后,该逻辑比特流的页面和其他逻辑比特流页面被混合组成一个物理Ogg比特流。

在这里插入图片描述

🎄四、Ogg 文件结构

从上面内容可知,Ogg文件也属于一个物理比特流。是由一个个页(page)组成的。首先,我们要了解一个页的内容,然后找到Ogg文件的各个页就可以解析Ogg文件了。

✨4.1 Ogg 页(page)格式

Ogg的页(page)由页面头部(page header) 加上该页的各个段(segments)的数据组成。
在这里插入图片描述

页面头部(page header)中的9个字段具有以下含义:

  • 1、capture_pattern:表示页面开始的4字节字段。它包含4个字符:OggS。它可以帮助解码器找到页面边界,并在解析损坏的流后重新获得同步。一旦发现捕获模式,解码器就通过计算和比较校验和来验证页面同步和完整性。

  • 2、stream_structure_version:1字节,表示该流中使用的Ogg文件格式的版本号(本文档指定版本0)。

  • 3、header_type_flag:这1字节字段中的位标识该页面的特定类型。

    • bit 0x01
      • 被设置:页面包含从上一页继续的数据包的数据。
      • 没设置: 页面包含新的数据包
    • bit 0x02
      • 被设置:这是逻辑比特流(bos)的第一页
      • 没设置:此页面不是首页
    • bit 0x04
      • 被设置:这是逻辑比特流(eos)的最后一页
      • 没设置:这一页不是最后一页
  • 4、granule_position:包含位置信息的8字节字段。例如,对于音频流,它可能包含在包括此页面上完成的所有帧之后编码的PCM样本的总数。对于视频流,它可能包含在此页面之后编码的视频帧的总数。这是对解码器的提示,并给它一些定时和位置信息。其含义取决于该逻辑比特流的编解码器,并在特定媒体映射中指定。特殊值-1(以2的补码表示)表示此页上没有数据包结束。

  • 5、bitstream_serial_number:包含唯一序列号的4字节字段,通过该唯一序列号来识别逻辑比特流。

  • 6、page_sequence_number:包含页面序列号的4字节字段,使得解码器可以识别页面丢失。该序列号在每个逻辑比特流上分别增加。

  • 7、CRC_checksum:包含页面的32位CRC校验和的4字节字段(包括具有零CRC字段的报头和页面内容)。生成多项式为0x04c11db7。

  • 8、number_page_segments:1字节,给出分段表(segment table)中编码的分段条目的数量。

  • 9、segment_table:大小为 number_page_segments 个字节。包含此页中所有段的lacing value。每个字节包含一个 lacing value。

以字节为单位的页面头部大小(total header size)由下式给出:

header_size = number_page_segments + 27 [Byte]

以字节为单位的总页面大小由下式给出:页面头部大小 + 所有lacing_values值之和

page_size = header_size + sum(lacing_values: 1..number_page_segments)[Byte]

✨4.2 Ogg 封装文件解析

这里按照上面的页的格式,演示怎样解析一个Ogg封装的文件,文件可以在这个链接下载:https://download.csdn.net/download/wkd_007/88492683 。

用Notepad打开该文件并查看十六进制模式:

下面是文件第一页的数据:
在这里插入图片描述

  • capture_pattern字段:值为0x4f、0x67、0x67、0x53,对应字符OggS,表示页起始标志;
  • stream_structure_version字段:值为0x00,表示版本号;
  • header_type_flag字段:值为0x02,表示逻辑比特流(bos)的第一页;
  • granule_position字段:值为0x0,媒体编码相关的参数信息,表示到本页为止逻辑流有0个采样;
  • bitstream_serial_number字段:0x23、0x49、0x02、0x11,逻辑比特流序列号;
  • page_sequence_number字段:0x00、0x00、0x00、0x00,页面序列号;
  • CRC_checksum字段:0xdf、0xe2、0x0c、0x1f,32位CRC校验;
  • number_page_segments字段:0x01,表示后面段(segment)的个数,本页有1个段(segment);
  • segment_table:前面指明了只有1个段,所以segment_table大小为1个字节,值为 0x13,表示这个段的大小为0x13个字节。
  • 后面的0x13个字节就是段的内容(上图中浅蓝色背景的字节):0x4f开始到0x00

紧接着是第二页的数据:
在这里插入图片描述

  • capture_pattern字段:值为0x4f、0x67、0x67、0x53,对应字符OggS,表示页起始标志;
  • stream_structure_version字段:值为0x00,表示版本号;
  • header_type_flag字段:值为0x00,表示不是逻辑比特流(bos)的第一页,也不是最后一页,也不包含从上一页继续的数据包;
  • granule_position字段:值为0x0,媒体编码相关的参数信息,表示到本页为止逻辑流有0个采样;
  • bitstream_serial_number字段:0x23、0x49、0x02、0x11,逻辑比特流唯一序列号;
  • page_sequence_number字段:0x01、0x00、0x00、0x00,页面序列号;
  • CRC_checksum字段:0xd4、0x3e、0x3f、0x20,32位CRC校验;
  • number_page_segments字段:0x03,表示后面段(segment)的个数,本页有3个段(segment);
  • segment_table:前面指明了3个段,所以segment_table大小为3个字节,值为 0xff、0xff、0xfe,表示这个3个段的大小分别为为 0xff、0xff、0xfe个字节。后面三个段的总字节数为: 0xff+0xff+0xfe=0x2fc字节。
  • 之后的0x2fc个字节就是三个段的内容(上图中浅蓝色背景的字节,没显示完整):0x4f开始到0x00。这里的起始地址是0x4d,加上0x2fc,就是下一页的地址0x349

紧接着是第三页的数据,起始地址是0x349
在这里插入图片描述

  • capture_pattern字段:值为0x4f、0x67、0x67、0x53,对应字符OggS,表示页起始标志;
  • stream_structure_version字段:值为0x00,表示版本号;
  • header_type_flag字段:值为0x00,表示不是逻辑比特流(bos)的第一页,也不是最后一页,也不包含从上一页继续的数据包;
  • granule_position字段:值为0x80、0xbb、0x0、0x0、0x0、0x0、0x0、0x0,媒体编码相关的参数信息,小端表示到本页的逻辑流有48000帧(小端0xbb80=48000);
  • bitstream_serial_number字段:0x23、0x49、0x02、0x11,逻辑比特流唯一序列号;
  • page_sequence_number字段:0x02、0x00、0x00、0x00,页面序列号;
  • CRC_checksum字段:0x98、0x9d、0xc5、0x56,32位CRC校验;
  • number_page_segments字段:0x33,表示后面段(segment)的个数,本页有51(0x33=51)个段(segment);
  • segment_table:前面指明了51个段,所以segment_table大小为51个字节,值分别为图中蓝色背景部分,每个字节表示各个段的大小。这51个字节的值相加就是后面51个段总字节数:0xff + 0x06 + 0xe5 + 0xab + 0xa2 + 0xa1 + 0xa5 + 0xa3 + 0xdf + 0xab + 0xa7 + 0xa1 + 0xa3 + 0x9d + 0xec + 0xe0 + 0xa4 + 0x9e + 0xb3 + 0xa6 + 0xbe + 0xb8 + 0xb4 + 0xaa + 0xa3 + 0xa2 + 0xa4 + 0x99 + 0x9f + 0x9c + 0x96 + 0x94 + 0x94 + 0x97 + 0x99 + 0x9a + 0xa1 + 0x9e + 0xa0 + 0xa6 + 0xa1 + 0xa0 + 0xaa + 0xa9 + 0xac + 0xa4 + 0xa6 + 0x9d + 0x9a + 0x94 + 0x98 = 8484个字节;
  • 之后的8484个字节就是51个段的内容。第一个段的起始地址是0x397,加上8484,就是下一页的地址0x24bb

紧接着是第四页的数据,起始地址是0x24bb
在这里插入图片描述

  • capture_pattern字段:值为0x4f、0x67、0x67、0x53,对应字符OggS,表示页起始标志;
  • stream_structure_version字段:值为0x00,表示版本号;
  • header_type_flag字段:值为0x00,表示不是逻辑比特流(bos)的第一页,也不是最后一页,也不包含从上一页继续的数据包;
  • granule_position字段:值为0x00、0x77、0x01、0x0、0x0、0x0、0x0、0x0,媒体编码相关的参数信息,小端表示到本页的逻辑流有96000帧(小端0x017700=96000);
  • bitstream_serial_number字段:0x23、0x49、0x02、0x11,逻辑比特流唯一序列号;
  • page_sequence_number字段:0x03、0x00、0x00、0x00,页面序列号;
  • CRC_checksum字段:0x25、0x80、0xd7、0x7d,32位CRC校验;
  • number_page_segments字段:0x32,表示后面段(segment)的个数,本页有50(0x32=51)个段(segment);
  • segment_table:前面指明了50个段,所以segment_table大小为50个字节,值分别为图中蓝色背景部分,每个字节表示各个段的大小。这50个字节的值相加就是后面50个段总字节数,这里不计算了,感兴趣自己算。
  • 之后的若干个字节就是50个段的内容。

这里解析了4页,后面的页数依次类推去分析,这个文件有118页,最后一页的话,其header_type_flag字段值为0x04。

在这里插入图片描述

🎄五、读取Ogg文件的C语言代码

// readOggFile.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// 8字节数组转成 unsigned long long
unsigned long long ToULL(unsigned char num[8], int len)
{
	unsigned long long ret = 0;
	if(len==8)
	{	
		int i=0;
		for(i=0; i<len; i++)
		{
			ret |= ((unsigned long long)num[i] << (i*8));
		}
	}
	return ret;
}

// 4字节数组转成 unsigned int
unsigned int ToUInt(unsigned char num[4], int len)
{
	unsigned int ret = 0;
	if(len==4)
	{
		int i=0;
		for(i=0; i<len; i++)
		{
			ret |= ((unsigned int)num[i] << (i*8));
		}
	}
	return ret;
}

int readOggPage(char *oggFile)
{
	typedef struct PAGE_HEADER{  
		char           Oggs[4];        
		unsigned char  ver;
		unsigned char  header_type_flag;
		unsigned char  granule_position[8];
		unsigned char  stream_serial_num[4];
		unsigned char  page_sequence_number[4];
		unsigned char  CRC_checksum[4];
		unsigned char  seg_num;
		unsigned char  segment_table[];
	}PAGE_HEADER;
	
	FILE *fp=fopen(oggFile,"rb");
	
	while(!feof(fp))
	{
		// 1、读取 page_header
		PAGE_HEADER page_header;
		if(1 != fread(&page_header,sizeof(page_header),1,fp))
			break;
		printf("page_num:%03u; ",ToUInt(page_header.page_sequence_number, 4));
		printf("Oggs:%c %c %c %c; ",page_header.Oggs[0],page_header.Oggs[1],page_header.Oggs[2],page_header.Oggs[3]);
		printf("type=%d, granule_position:%08llu; ", page_header.header_type_flag,ToULL(page_header.granule_position, 8));
		//printf("seg_num:%d \n",page_header.seg_num);
		
		// 2、读取 Segment_table
		unsigned char *pSegment_table = (unsigned char *)malloc(page_header.seg_num);
		fread(pSegment_table,sizeof(unsigned char),page_header.seg_num,fp);
		
		// 3、计算段数据总大小
		unsigned int TotalSegSize = 0;
		int i=0;
		for(i=0; i<page_header.seg_num; i++)
		{
			TotalSegSize += pSegment_table[i];
		}
		printf("TotalSegSize:%d \n",TotalSegSize);
		
		// 4、读取段数据
		unsigned char *pSegment_data = (unsigned char *)malloc(TotalSegSize);
		fread(pSegment_data,sizeof(unsigned char),TotalSegSize,fp);
		
		if(page_header.header_type_flag == 4)
			printf("Last 4 Byte: %x %x %x %x\n",pSegment_data[TotalSegSize-4],pSegment_data[TotalSegSize-3], pSegment_data[TotalSegSize-2],pSegment_data[TotalSegSize-1]);
		
		free(pSegment_data);
		free(pSegment_table);
	}
	fclose(fp);
	return 0;
}

int main()
{
	readOggPage("48000Hz-s16le-1ch-ChengDu.opus");
	return 0;
}

在这里插入图片描述

🎄六、总结

本文介绍了Ogg支持的编码格式,Ogg的封装过程,Ogg文件结构,以及Ogg的相关术语(物理比特流、逻辑比特流、数据包(packet)、页(page)、段(segment) )等内容。

最后,似乎有点问题,文章只讲了Ogg文件结构和页头部数据,并没有解析各个段的内容。因为段的内容是根据编码不同而变化的,需要再了解跟编码相关的文档如:opus音频编解码器的Ogg封装。这些内容后面单独去分析。

这两天发现了查看RFC文档的一个网址:https://datatracker.ietf.org/,只需要搜索想看的RFC文档,基本都可以搜到。
https://datatracker.ietf.org/doc/rfc7845/,显示格式是标题栏在上面;
https://datatracker.ietf.org/doc/html/rfc7845/,显示格式是标题栏在侧边,个人比较喜欢这个风格。

在这里插入图片描述
如果文章有帮助的话,点赞👍、收藏⭐,支持一波,谢谢 😁😁😁

参考文档:
rfc3533:https://datatracker.ietf.org/doc/html/rfc3533
Opus从入门到精通(五)OggOpus封装器全解析:https://juejin.cn/post/6844904016254599175
https://www.cnblogs.com/dylancao/p/8303418.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1162859.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自定义在input生成tag标签样式,标签可删除。组件封装

生成效果如图&#xff1a; <template><div class"tag-input"><!-- 父盒子 --><div class"father_box" click"fatherOnclick" :class"verify?:notVerify"><!-- 生成的标签 --><div v-for"(item…

部署DB-GPT

踩坑 参考文献安装环境与模型运行安装conda环境下载git-lfs克隆源码配置.env文件加载SQLite的数据运行DB-GPT配置sqlite数据库数据库示例 pydantic版本问题bash报错 参考文献 https://zhuanlan.zhihu.com/p/629467580 https://blog.csdn.net/qq_40231723/article/details/1339…

Python异步网络编程利器——详解aiohttp的使用教程

一、引言 在现代Web应用程序开发中&#xff0c;网络请求是非常常见的操作。然而&#xff0c;传统的同步网络请求方式在处理大量请求时会导致性能瓶颈。为了解决这个问题&#xff0c;Python提供了aiohttp库&#xff0c;它是一个基于异步IO的网络请求库&#xff0c;可以实现高效…

CCF ChinaSoft 2023 论坛巡礼 | 测试预期问题与蜕变测试研究进展论坛

2023年CCF中国软件大会&#xff08;CCF ChinaSoft 2023&#xff09;由CCF主办&#xff0c;CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办&#xff0c;将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…

win10-mmgen安装/cyclegan运行问题记录

mmconda环境&#xff1a; conda&#xff1a; CUDA 11.3 conda install pytorch1.11.0 torchvision0.12.0 torchaudio0.11.0 cudatoolkit11.3 -c pytorch pip install mmcv-full1.5.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html 成功运行 c…

golang 发起 http 请求,获取访问域名的 ip 地址(net, httptrace)

前言 今天碰到了个需求&#xff0c;我要知道程序对外访问的 http 请求域名的 ip 地址。 直接查看 golang 的 net/http 包&#xff0c;发现 Response 中并没有我想要的 ip 信息。 考虑到在 OSI 七层模型中&#xff0c;ip 是网络层协议&#xff0c;而 http 是应用层协议。去翻…

面试算法50:向下的路径节点值之和

题目 给定一棵二叉树和一个值sum&#xff0c;求二叉树中节点值之和等于sum的路径的数目。路径的定义为二叉树中顺着指向子节点的指针向下移动所经过的节点&#xff0c;但不一定从根节点开始&#xff0c;也不一定到叶节点结束。例如&#xff0c;在如图8.5所示中的二叉树中有两条…

喜讯!INFINI Easysearch 在墨天轮数据库排名中挺进前30!

近日&#xff0c;2023 年 10 月的 墨天轮中国数据库流行度排行 火热出炉&#xff0c;本月共有 283 个数据库参与排名&#xff0c;中国数据库行业竞争日益激烈。其中&#xff0c;极限科技旗下软件产品 INFINI Easysearch 稳步推进&#xff0c;在国内整个数据库排行中进入了前 30…

海康威视iVMS综合安防系统文件上传漏洞复现

简介 海康威视iVMS集中监控应用管理平台&#xff0c;是以安全防范业务应用为导向&#xff0c;以视频图像应用为基础手段&#xff0c;综合视频监控、联网报警、智能分析、运维管理等多种安全防范应用系统&#xff0c;构建的多业务应用综合管理平台。 漏洞描述 海康威视iVMS系统…

Qt 插件开发详解

1.简介 Qt插件是一种扩展机制&#xff0c;用于将应用程序的功能模块化&#xff0c;并且可以在运行时动态加载和卸载。Qt框架为插件提供了一套标准的接口和管理机制&#xff0c;使得插件的使用和集成变得简单和灵活&#xff0c;通过插件机制&#xff0c;可以将应用程序的功能划…

QT5.15.2搭建Android编译环境及使用模拟器调试(全)

一、安装QT5.15.2 地址&#xff1a;下载 我电脑的windows的&#xff0c;所以选windows 由于官方安装过程非常非常慢&#xff0c;一定要跟着步骤来安装&#xff0c;不然慢到怀疑人生 1&#xff09;打开"命令提示符"&#xff08;开始 -> Windows 系统 -> 命令…

安防监控系统EasyCVR视频汇聚平台,如何实现视频汇聚?

关注我们的朋友都知道&#xff0c;EasyCVR平台最初就是以汇聚为核心而进行打造的&#xff0c;那到底什么是汇聚平台呢&#xff1f;又如何进行视频资源汇聚&#xff1f;简单来说&#xff0c;视频汇聚平台是指能够从不同的视频源&#xff08;例如直播、点播等&#xff09;收集、整…

如何使用Ruby 多线程爬取数据

现在比较主流的爬虫应该是用python&#xff0c;之前也写了很多关于python的文章。今天在这里我们主要说说ruby。我觉得ruby也是ok的&#xff0c;我试试看写了一个爬虫的小程序&#xff0c;并作出相应的解析。 Ruby中实现网页抓取&#xff0c;一般用的是mechanize&#xff0c;使…

【JMeter】插件管理工具

1. 官方下载地址 Documentation :: JMeter-Plugins.org 2.安装 将该插件的jar包移动到lib/ext下 3.重启JMeter就可以看到插件管理器 4. 安装&#xff0c;更新&#xff0c;删除插件 安装插件 删除插件 更新插件

Windows10电脑上的此电脑图标在哪里找到?

Windows10电脑上的此电脑图标在哪里找到&#xff1f; 1、在Windows10电脑桌面上鼠标右键&#xff0c;找到个性化点击打开&#xff1b; 2、打开个性化桌面设置后&#xff0c;找到主题并点击进入&#xff1b; 3、在主题相关的设置中找到桌面图标设置&#xff0c;并点击打开&…

【python基础】魔法参数*args, **kwargs的使用

文章目录 前言一、*args 和 **kwargs 是什么&#xff1f;二、*args 的用法打包参数&#xff1a;将不定数量的参数传递给一个函数拆分参数&#xff1a;调用一个函数 三、**kwargs 的用法打包参数&#xff1a;将不定数量的参数传递给一个函数拆分参数&#xff1a;调用一个函数 四…

【算法专题】双指针—快乐数

一、题目解析 由题目我们可以分析出无非就两种情况&#xff1a; 这个数一直变化最终能变到1这个数一直变化最终是无限循环 其实这两种情况我们也可以抽象成是一种情况&#xff0c;因为第一种情况虽然变到了1但是1再继续变下去也是形成一个环&#xff0c;只不过这个环的数都是…

GROMACS Tutorial - TMD with NeqPCA

Contents IntroductionSystem BuildingGenerate Topologyfrom Solvation to Equilibration Create trajectoriesPCA for TMD Introduction 首先简单介绍一下TMD模拟&#xff0c;类似于SMD模拟&#xff08;可以参考这篇教程&#xff09;&#xff0c;TMD 通过pull_coord1_type …

2.Docker基本架构简介与安装实战

1.认识Docker的基本架构 下面这张图是docker官网上的&#xff0c;介绍了整个Docker的基础架构&#xff0c;我们根据这张图来学习一下docker的涉及到的一些相关概念。 1.1 Docker的架构组成 Docker架构是由Client(客户端)、Docker Host(服务端)、Registry(远程仓库)组成。 …

树型表查询的两种方式(inner join 和 mysql递归查询)

方法一: 使用inner join来查询 SELECTone.id one_id,one.label one_label,two.id two_id,two.label two_label FROMcourse_category oneINNER JOIN course_category two ON two.parentid one.id WHEREone.parentid 1 AND one.is_show 1 AND two.is_show 1查询结果 方法…