目录
1 A* 算法提出的动机
2 A*算法代码详解
3 A*算法完整代码
1 A* 算法提出的动机
减少收录的珊格树目,增加搜索速度。在Dijkstra算法中,我们考虑收录栅格时我们考虑的是到起点的距离,我们会考虑收录距离起点较近的珊格进行收录。在A*算法,我们增加启发式函数,加快其导向终点的速度。
举个例子:
图中两个红色光晕节点,下面的点距离起点较近(蓝色的),所以Dijkstra会选择下面的节点进行收录。我们在这基础上增加这两个节点到终点的距离。我们发现上面节点到终点的距离会更加小,我们就会收录上面的节点。从而在收录节点的时候就会更加快速的导向终点。
看一下算法对比:
算法和Dijkstra相比仅多了一个启发项,因此代码架构只需要更改一点即可:
当然,启发项不是随便加的,我们需要保证算法还是找到的最优路径。我们需要保证,这里*h(n)是最优解。
比如我们从1-->3这个节点要寻找一条路径:
我们回顾一下open list和close list:上方的h表示预计到终点的距离。(假设的...)
openlist: 2(1+6) 3(5+0) closelist: 1(0)
那么我会选择收录三号点。我们认为最优路径是1-->3而不是1-->2-->3我们就不能保证最优性了。但是1-->3的扩展点更加少,一部分程度上来说增加了速度。(有好有坏)
2 A*算法代码详解
相比较于Dijkstra算法就增加了一个启发函数:
# 选择扩展点 f(n) = g(n) + h(n) c_id = min( open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node, open_set[ o]))
我们看一下这个启发函数:
def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d
先来看函数调用,goal_node是目标点。
d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
:使用欧几里得距离公式计算了两个节点在二维平面上的距离,其中n1.x
和n1.y
分别表示节点n1
的x坐标和y坐标,n2.x
和n2.y
分别表示节点n2
的x坐标和y坐标。将得到的距离乘以权重w
得到启发式值d
。也就是计算出了该节点到终点的距离作为启发项。其余与Dijkstra算法一致,不再赘述。
3 A*算法完整代码
""" A* grid planning author: Atsushi Sakai(@Atsushi_twi) Nikos Kanargias (nkana@tee.gr) See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm) """ import math import matplotlib.pyplot as plt show_animation = True class AStarPlanner: def __init__(self, ox, oy, resolution, rr): """ Initialize grid map for a star planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ self.resolution = resolution self.rr = rr self.min_x, self.min_y = 0, 0 self.max_x, self.max_y = 0, 0 self.obstacle_map = None self.x_width, self.y_width = 0, 0 self.motion = self.get_motion_model() self.calc_obstacle_map(ox, oy) class Node: def __init__(self, x, y, cost, parent_index): self.x = x # index of grid self.y = y # index of grid self.cost = cost self.parent_index = parent_index def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ A star path search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ start_node = self.Node(self.calc_xy_index(sx, self.min_x), self.calc_xy_index(sy, self.min_y), 0.0, -1) goal_node = self.Node(self.calc_xy_index(gx, self.min_x), self.calc_xy_index(gy, self.min_y), 0.0, -1) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(start_node)] = start_node while 1: if len(open_set) == 0: print("Open set is empty..") break # 选择扩展点 f(n) = g(n) + h(n) c_id = min( open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node, open_set[ o])) current = open_set[c_id] # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.min_x), self.calc_grid_position(current.y, self.min_y), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit( 0) if event.key == 'escape' else None]) if len(closed_set.keys()) % 10 == 0: plt.pause(0.001) if current.x == goal_node.x and current.y == goal_node.y: print("Find goal") goal_node.parent_index = current.parent_index goal_node.cost = current.cost break # Remove the item from the open set del open_set[c_id] # Add it to the closed set closed_set[c_id] = current # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id in closed_set: continue if n_id not in open_set: open_set[n_id] = node # discovered a new node else: if open_set[n_id].cost > node.cost: # This path is the best until now. record it open_set[n_id] = node rx, ry = self.calc_final_path(goal_node, closed_set) return rx, ry def calc_final_path(self, goal_node, closed_set): # generate final course rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [ self.calc_grid_position(goal_node.y, self.min_y)] parent_index = goal_node.parent_index while parent_index != -1: n = closed_set[parent_index] rx.append(self.calc_grid_position(n.x, self.min_x)) ry.append(self.calc_grid_position(n.y, self.min_y)) parent_index = n.parent_index return rx, ry @staticmethod def calc_heuristic(n1, n2): w = 1.0 # weight of heuristic d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) return d def calc_grid_position(self, index, min_position): """ calc grid position :param index: :param min_position: :return: """ pos = index * self.resolution + min_position return pos def calc_xy_index(self, position, min_pos): return round((position - min_pos) / self.resolution) def calc_grid_index(self, node): return node.y * self.x_width + node.x def verify_node(self, node): px = self.calc_grid_position(node.x, self.min_x) py = self.calc_grid_position(node.y, self.min_y) if px < self.min_x: return False elif py < self.min_y: return False elif px >= self.max_x: return False elif py >= self.max_y: return False # collision check if self.obstacle_map[node.x][node.y]: return False return True def calc_obstacle_map(self, ox, oy): self.min_x = round(min(ox)) self.min_y = round(min(oy)) self.max_x = round(max(ox)) self.max_y = round(max(oy)) print("min_x:", self.min_x) print("min_y:", self.min_y) print("max_x:", self.max_x) print("max_y:", self.max_y) self.x_width = round((self.max_x - self.min_x) / self.resolution) self.y_width = round((self.max_y - self.min_y) / self.resolution) print("x_width:", self.x_width) print("y_width:", self.y_width) # obstacle map generation self.obstacle_map = [[False for _ in range(self.y_width)] for _ in range(self.x_width)] for ix in range(self.x_width): x = self.calc_grid_position(ix, self.min_x) for iy in range(self.y_width): y = self.calc_grid_position(iy, self.min_y) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obstacle_map[ix][iy] = True break @staticmethod def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = -5.0 # [m] sy = -5.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") a_star = AStarPlanner(ox, oy, grid_size, robot_radius) rx, ry = a_star.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.001) plt.show() if __name__ == '__main__': main()