[移动通讯]【Carrier Aggregation-10】【 Radio Resource Control (RRC) Aspects】

news2025/4/9 9:07:48

前言:

参考《4G/LTE - LTE Advanced》

     Carrier Aggregation is a special form of LTE technology that enables UE and Network to use more than one carrier frequencies. Actually this is not a new concept in LTE. You might have used/heard Dual Carrier in WCDMA HSDPA (HSDPA DC) or similar mode in WiFi 

目录:

  1.     Initial Motivation for Carrier Aggregation
  2.     Initial Deployment
  3.     Overview of Carrier Allocation and Network Architecture
  4.     Layer 2 Structure of Carrier Aggregation
  5.     What kind of Aggregated Carrier (Carrier Combination) is possible ?
  • E-UTRA CA configurations and bandwidth combination sets defined for intra-band contiguous CA
  • E-UTRA CA configurations and bandwidth combination sets defined for non-contiguous intra-band CA (with two sub-blocks)
  • E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA
  • Test Frequency Table

6  Determining Channel Spacing for Intra-band Contiguous CA

7 How a Network know if a UE support Carrier Aggregation ?

8 Overall Sequence of Adding a Second Carrier

9  Evolution path of Carrier Aggregation / Possible Test Plan


一    Initial Motivation for Carrier Aggregation

        You may be hearing more and more about LTE Advanced these days (approaching the end of 2012) and you may think "Do we really need such a huge bandwidth ? Is the current LTE BW not enough ? Do we have all the technologies mature enough for LTE Advanced Implementation ?"

        To see the mature implementation of LTE advanced network or mobile phone, you should get firm "YES" to following quesitons first.

      Is there any major LTE Network Operators who has strong willingness to deploy LTE Advanced Network(Feature) ?
Are all those components (especially baseband chipsets and RF devices) for LTE advanced device available and mature in the market ?
Are there any test equipment which are providing the test capability for the device ?
 

      As of the end of 2012, I don't think I have firm "YES" to any of these questions. But I am hearing that a couple of LTE network operators will deploy LTE Advanced feature in very near future and some operators has already supported the feature. I think this is true, but the LTE advanced they talk about at this point is not the full fledged technology and it is mainly about Carrier Aggregation.

       Does this mean that they already feel the current 20 Mhz LTE bandwidth is not enough ? As far as I know, it is not because of this. Even though the current LTE supports 20 Mhz BW in max, there are only a few network operators who is certified for such a wide bandwidth. The most common bandwidth that network operators has for LTE is 10 Mhz, which means they are not fully utilizing the LTE capability in terms of bandwidth. This is not because of technical restriction, it is purely because of licensing issues for the allocated bandwidth.

        Even though there is not many Network Operators who has 20 Mhz BW, there are some network operators who has license multiple band (e.g, two separated 10 Mhz BW and two or more 5 Mhz BW). These network operators wants to combine those multiple bands to achieve wide BW (in most case 20 Mhz BW) LTE. It is the initial motivation for LTE Advanced for now and I don't think we will see the fully grown LTE advanced technology in any time soon. We still have a lot of things to be done even for the initial LTE (Release 8 LTE) and this maturing process would take a couple of more years. LTE Advanced will be introduced gradually in parallele to Release 8 LTE, but initial introduction of LTE advanced would be more about "Marketing motivation" rather than "Technical motivation".

    市场动机:运营商离散的频谱资源,需要充分利用,提高带宽。


二 Initial Deployment

   

     You may heard from other sources or will see in this page a lot of fancy stories about LTE advanced (like the aggregation of 5 carriers with 20 Mhz BW each, 8 x 8 DL MIMO, 4 x 4 UL MIMO, 1G Data Rate etc). But as I mentioned above, the reality would not be as fancy as you may expect. As of Jan, 2013. The only type of deployment I am hearing that some network operators would deploy is as follows :

i) 2 DL Carriers (mostly 10 Mhz BW each, Inter band)

ii) NO UL Subcarriers

           CA 聚合的三种方式

              Intra-band continues

              Intra-band non-continues

              Intre-band 

Even this simple configuration there are many things to consider and following is some of the list.

Q1:  What kind of data you would carry on the primary and secondary DL carrier ?
Q2   Definately both channel can carry PDSCH.
Q3   How about PDCCH ? 
Q4:  Would both DL carry each of its own PDCCH seprately ? 
Q5   or Primary DL Carrier would carry PDCCH for both carrier and the secondary carrier carry only PDSCH ?.
Q6   Both options are possible and it is upto network implementation.
Q7   How kind of data you would carry on UL carrier ?

: You may think there would be no differences in UL carrier if UL does not support multi carrier as in the initial deployment,
 but it would not be true. There would be no differences in terms of PUSCH,
 but how about PUCCH? Since UE is getting PDSCHs from two separate carriers, there should be questions of how to send HARQ ACK/NACK for
 each of the PDSCH. Should UE send separate PUCCHs(HARQ ACK/NACK for each DL carriers) or single PUCCH carrying the HARQ ACK/NACK for both channels.
 Both options are possible in terms of Rel 9/Rel 10 specification, but it is higher possibility to use a single PUCCH for carrying HARQ ACK/NACK for both DL carriers. 
 It means that we will have new PUCCH format for this situation.

Q8 How to handle PRACH ?

: Since UE can have possibility of send Uplink to two different carrier and can receive the data from two separate carrier. 
Possible channels for PRACH procedure can be diverse as shown below.

    PRACH via Primary Carrier and RAR via Primary Carrier
    PRACH via Primary Carrier and RAR via Secondary Carrier
    PRACH via Secondary and RAR via Secondary Carrier
    and couple of others.
    But I guess the first option would be the best candidate since it is easy and is the same as Rel 8 method we are currently using.

    How to handle handover with dual carrier ?
    For this, we may also have easy option or tricky option.
    Tricky option would be to handover the two carrier without any modification from one cell (source cell) to another (destination cell).
    but this will cause a lot of issues if it is not very carefully implemented.

    Easy option would be to remove the secondary DL channel before handover and then perform handover and configure the secondary channel 
    in the destination cell.

    Of course, it is highly probable to take an easy option for initial deployment.


三  Overview of Carrier Allocation and Network Architecture

         One of the most important/critical feature in LTE Advanced is that we use multiple carriers in downlink and possible in uplink as well.
 It may sound simple to use multiple carriers, but in reality, with the introduction of multiple carrier all the possible carrier/resource allocation
 in uplink and downlink has such a huge combinations as shown below.

         This is not just a graphicaly complication -:). 
Just by looking at this illustration, a lot of questions would be boggling in your mind. 
How to allocated resources (number of RBs) in control channel ? 
Do we have to have separate HARQ process for each carrier ? 
or single-aggregated HARQ for the multiple carrier ?
 What about Uplink side ?  How can I schedule the resource for Multiple SC-FDMA (Clustered SC-FDMA) ?  etc... These are the topics I have to add later.. For now, 
 just enjoy the illustration and use your imagination for all of these questions. 
 Trying to get the solution based on your imagination would greatly help you to understand 3GPP specification.
      This is a kind of motivation step for the new study.

     

        Another aspect of LTE Advanced is network architecture side. One of the key modification of LTE advanced is 'Relay Node' to improve data communication
 especially on cell boundary and increase cell coverage. Again, I just put the illustrations and I would like you to use your imagination to find the answers 
 to the questions popping up in your mind.  Do we need any RRC message or Information element to handle this Relay Node ?
          How a UE handle the situation as shown for UE C in the following illustration. 
 This UE is getting the similar strength of signals both from eNodeB and Relay Node.
 Would it be possible to handover between two Relay Nodes ? Would the Relay Node have the same RF capability as eNB ? 
 Would this Relay Node get involved in L1/PHY scheduling as well ? etc.


     


四  Layer 2 Structure of Carrier Aggregation

        Many people asked me "Is there any way to direct a specific IP packet to PCC (Mirmary Component Carrier) and another specific IP packet to SCC (Secondary Component Carrier) ?".

The Answer is 'No'.

         You may understand why the answer is 'NO' from L2 structure of 3GPP 36.300 as shown below (This figure may look a little too complicated. You will find clearer figure after this). As you may notice here, Carrier Layer Aggregation is MAC-PHY layer concept and it is not applied to higher layer.

For clarity, let's suppose a case of a Carrier Aggregation with 2 CC(Component Carrier) and each carrier support SISO. Following is overal data path from IP to Physical layer. As you see, from IP through RLC, there is no separate path between PCC and SCC.

      For clarity, let's suppose a case of a Carrier Aggregation with 2 CC(Component Carrier) and each carrier support MIMO. Following is overall data path from IP to Physical layer. As you see, from IP through RLC, there is no separate path between PCC and SCC.

itemcate
B111 LTE LL1 Rx Agc Log:Rx AGC log packet for both PCC and SCC   individuallyindividually
B139 LTE LL1 PUSCH Tx Report:Number of ACK/NACK bits is 4. In the example below, the UE sends ACKS for both DL MIMO streams on PCC and SCCpcc
B173 LTE PDSCH Stat Indication:Serving cell index indicates the respective grant on PCell and SCell.Each CC has an independent HARQ process i.e., 8 HARQ IDs per CC.individually
B18A LTE ML1 RLM Report - RLM BLER/SNR is calculated only on PCell.pcc
B130 LTE LL1 PDCCH Decoding Result
.UE decodes PDCCH on both SCC and PCC
pcc

B193 LTE ML1 Idle Serving Cell Meas Response
Shows both PCell and SCell measurements
pcc

五   What kind of Aggregated Carrier (Carrier Combination) is possible ?

        Now the question you may ask is how can I know which band combination of bands a UE support in terms of Carrier Aggregation ?

        It is also supposed to be reported to network by the UE via UE Capability Information message. Followings are some of the possible IEs a UE may use depending on its release status.

RF-Parameters-v1020 ::= SEQUENCE {

    supportedBandCombination-r10 SupportedBandCombination-r10

}

RF-Parameters-v1090 ::= SEQUENCE {

    supportedBandCombination-v1090 SupportedBandCombination-v1090 OPTIONAL

}

RF-Parameters-v1130 ::= SEQUENCE {

    supportedBandCombination-v1130 SupportedBandCombination-v1130 OPTIONAL

}  

         The definition of these IE is described as below in 36.331. Generally it sounds OK.. but it is not very clear to me if I go into one step deeper. For example, this definition does not clearly explain on which item in the list can be a PCC (Primary Component Carrier) and which should be SCC (Secondary Component Carrier). As far as I know, there is no priority of these items in terms of determining PCC/SCC, meaning either one should be allowed to be PCC depending on situation. But you may see some UE that allows only specific PCC/SCC mapping.

      bandCombinationListEUTRA : One entry corresponding to each supported band combination listed in the same order as in supportedBandCombination.

    BandCombinationParameters-v1090 : If included, the UE shall include the same number of entries, and listed in the same order, as in BandCombinationParameters-r10.

     BandCombinationParameters-v1130 :The field is applicable to each supported CA bandwidth class combination (i.e. CA configuration in TS 36.101 Section 5.6A.1 indicated in the corresponding band combination

One example of Carrier Combination information in UE Capability Information is as follows. This example shows the UE allows Carrier Aggregation between band 4 and band 17.

nonCriticalExtension

    rf-Parameters-v1020

        supportedBandCombination-r10: 1 item

            Item 0

                BandCombinationParameters-r10: 2 items

                    Item 0

                        BandParameters-r10

                            bandEUTRA-r10: 4

                            bandParametersUL-r10: 1 item

                                Item 0

                                    CA-MIMO-ParametersUL-r10

                                        ca-BandwidthClassUL-r10: a

                            bandParametersDL-r10: 1 item

                                Item 0

                                    CA-MIMO-ParametersDL-r10

                                        ca-BandwidthClassDL-r10: a

                                        supportedMIMO-CapabilityDL-r10: twoLayers

                    Item 1

                        BandParameters-r10

                            bandEUTRA-r10: 17

                            bandParametersDL-r10: 1 item

                                Item 0

                                    CA-MIMO-ParametersDL-r10

                                        ca-BandwidthClassDL-r10: a

                                        supportedMIMO-CapabilityDL-r10: twoLayers

       Following Table from 36.101 V11.7.0 (2014-03) shows all the possible (allowed) band combination of inter-band CA case. This list is likely to get extended as time goes on. So try to refer to latest spec. I just put inter-band case since I see only inter-band CA which is really deployed as of now (Apr 2014). If you are interested in intra-band CA, refer to Table 5.6A.1-1, Table 5.6A.1-3 in 36.101.

< 36.101 Table 5.6A.1-3: E-UTRA CA configurations and bandwidth combination sets defined for non-contiguous intra-band CA (with two sub-blocks) >< 36.101 Table 5.6A.1-3: E-UTRA CA configurations and bandwidth combination sets defined for non-contiguous intra-band CA (with two sub-blocks) >

36.101 Table 5.6A.1-2: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA

Test Frequency Tables >

 

For the specific test fequencies for each of the band combination, we need to refer to following tables in 36.508 (A lot of tables :)

  • Table 4.3.1.1.1-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 1
  • Table 4.3.1.1.1A-1 : Test Frequencies for CA_1C
  • Table 4.3.1.1.2-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 2
  • Table 4.3.1.1.3-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 3
  • Table 4.3.1.1.3A-1 : Test Frequencies for CA_3C
  • Table 4.3.1.1.4-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 4
  • Table 4.3.1.1.5-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 5
  • Table 4.3.1.1.6-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 6
  • Table 4.3.1.1.7-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 7
  • Table 4.3.1.1.7A-1 : Test Frequencies for CA_7C
  • Table 4.3.1.1.8-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 8
  • Table 4.3.1.1.9-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 9
  • Table 4.3.1.1.10-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 10
  • Table 4.3.1.1.11-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 11
  • Table 4.3.1.1.12-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 12
  • Table 4.3.1.1.13-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 13
  • Table 4.3.1.1.14-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 14
  • Table 4.3.1.1.17-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 17
  • Table 4.3.1.1.18-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 18
  • Table 4.3.1.1.19-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 19
  • Table 4.3.1.1.20-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 20
  • Table 4.3.1.1.21-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 21
  • Table 4.3.1.1.22-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 22
  • Table 4.3.1.1.23-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 23
  • Table 4.3.1.1.24-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 24
  • Table 4.3.1.1.25-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 25
  • Table 4.3.1.1.26-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 26
  • Table 4.3.1.1.27-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 27
  • Table 4.3.1.1.27A-1 : Test Frequencies for CA_27B
  • Table 4.3.1.1.28-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 28
  • Table 4.3.1.1.29-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 29
  • Table 4.3.1.1.31-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 31
  • Table 4.3.1.2.1-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 33
  • Table 4.3.1.2.2-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 34
  • Table 4.3.1.2.3-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 35
  • Table 4.3.1.2.4-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 36
  • Table 4.3.1.2.5-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 37
  • Table 4.3.1.2.6-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 38
  • Table 4.3.1.2.6A-1 : Test Frequencies for CA_38C
  • Table 4.3.1.2.7-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 39
  • Table 4.3.1.2.7A-1 : Test Frequencies for CA_39C
  • Table 4.3.1.2.8-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 40
  • Table 4.3.1.2.8A-1 : Test Frequencies for CA_40C
  • Table 4.3.1.2.9-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 41
  • Table 4.3.1.2.9A-1 : Test Frequencies for CA_41C
  • Table 4.3.1.2.10-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 42
  • Table 4.3.1.2.11-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 43
  • Table 4.3.1.2.12-1 : Test Frequencies for E-UTRA channel Bandwidth for operating band 44
  • Table 4.3.1.2.13-1: Test frequencies for E-UTRA channel bandwidth for operating band 45
  • Table 4.3.1.2.14A-1: Test frequencies for CA_46C
  • Table 4.3.1.2.14A-2: Test frequencies for CA_46D
  • Table 4.3.1.2.14A-3: Test frequencies for CA_46E
  • Table 4.3.1.2.14A-4: Test frequencies for CA_46A-46A
  • Table 4.3.1.2.15-1: Test frequencies for E-UTRA channel bandwidth for operating band 47
  • Table 4.3.1.2.16-1: Test frequencies for E-UTRA channel bandwidth for operating band 48

 

One of the UE capability information that may confuses you would be following IE. This IE shows you which band are supported by the UE in terms of single carrier. It is not about Carrier Aggregation.

 

rf-Parameters

  supportedBandListEUTRA: 4 items

      Item 0

          SupportedBandEUTRA

              bandEUTRA: 2

              ..0. .... halfDuplex: False

      Item 1

          SupportedBandEUTRA

              bandEUTRA: 4

              .0.. .... halfDuplex: False

      Item 2

          SupportedBandEUTRA

              bandEUTRA: 5

              0... .... halfDuplex: False

      Item 3

          SupportedBandEUTRA

              bandEUTRA: 17

              .... ...0 halfDuplex: False

 


六 Determining Channel Spacing for Intra-band Contiguous CA

    In case of Intraband Contiguous CA, figuring out channel spacing between two channels is not so easy because we need to put them togather without the guardband between each channel. The spacing between the two intraband contiguous CA channel can be calculated by following equation in  36.521-1 5.4.1A Channel spacing for CA


 

Based on this equation, I've calculated following cases.

Channel 1 BW

Channel 2 BW

Channel Spacing

20

20

19.8

20

15

17.1

20

10

14.4

20

5

11.7

15

15

15.0

15

10

12.0

15

5

9.3

10

10

9.9

10

5

7.2

5

5

4.8

You can check if my calculation is correct or not by referring to the test channel configuration specified in 36.508 as shown below.

 


七  How a Network know if a UE support Carrier Aggregation ?

    

    The most important thing you have to pay attention in UE Capability Information is CA Band combination as specified in RRC message as shown below.

Another important part is featureGroupIndicator (FGI) for r10. It has following items.


八  Overall Sequence of Adding a Second Carrier

Following is an example for RRC Connection Reconfiguration for LTE advanced (Step 1). I just enabled all IE on ASN to give you full details of parameters, but it reality the implementation would start with very limited set of parameters enabled and leaving large portions of parameter to some 3GPP default or hardcoded configuration based on aggrement between UE maker and Network Operator.

First part you have to pay attention to this sample RRC message is sCellToAddModList-r10 which is for adding the SCC and next important thing is pucch-ConfigDedicated-v1020 which is for defining uplink control channel for reporting Ack/Nac for aggregated Carrier.

-rrcConnectionReconfiguration-r8 ::= SEQUENCE [000101]

  +-measConfig ::= SEQUENCE OPTIONAL:Omit

  +-mobilityControlInfo ::= SEQUENCE OPTIONAL:Omit

  +-dedicatedInfoNASList ::= SEQUENCE OF OPTIONAL:Omit

  +-radioResourceConfigDedicated ::= SEQUENCE [000101] OPTIONAL:Exist

  | +-srb-ToAddModList ::= SEQUENCE OF OPTIONAL:Omit

  | +-drb-ToAddModList ::= SEQUENCE OF OPTIONAL:Omit

  | +-drb-ToReleaseList ::= SEQUENCE OF OPTIONAL:Omit

  | +-mac-MainConfig ::= CHOICE [explicitValue] OPTIONAL:Exist

  | | +-explicitValue ::= SEQUENCE [000]

  | |   +-ul-SCH-Config ::= SEQUENCE OPTIONAL:Omit

  | |   +-drx-Config ::= CHOICE OPTIONAL:Omit

  | |   +-timeAlignmentTimerDedicated ::= ENUMERATED [infinity]

  | |   +-phr-Config ::= CHOICE OPTIONAL:Omit

  | |   +-EXTENSION ::= SEQUENCE [01]

  | |     +-VERSION-BRACKETS1 ::= SEQUENCE OPTIONAL:Omit

  | |     +-VERSION-BRACKETS2 ::= SEQUENCE [1] OPTIONAL:Exist

  | |       +-mac-MainConfig-v1020 ::= SEQUENCE [111] OPTIONAL:Exist

  | |         +-sCellDeactivationTimer-r10 ::= ENUMERATED [rf16] OPTIONAL:Exist

  | |         +-extendedBSR-Sizes-r10 ::= ENUMERATED [setup] OPTIONAL:Exist

  | |         +-extendedPHR-r10 ::= ENUMERATED [setup] OPTIONAL:Exist

  | +-sps-Config ::= SEQUENCE OPTIONAL:Omit

  | +-physicalConfigDedicated ::= SEQUENCE [0000000000] OPTIONAL:Exist

  | | +-pdsch-ConfigDedicated ::= SEQUENCE OPTIONAL:Omit

  | | +-pucch-ConfigDedicated ::= SEQUENCE OPTIONAL:Omit

  | | +-pusch-ConfigDedicated ::= SEQUENCE OPTIONAL:Omit

  | | +-uplinkPowerControlDedicated ::= SEQUENCE OPTIONAL:Omit

  | | +-tpc-PDCCH-ConfigPUCCH ::= CHOICE OPTIONAL:Omit

  | | +-tpc-PDCCH-ConfigPUSCH ::= CHOICE OPTIONAL:Omit

  | | +-cqi-ReportConfig ::= SEQUENCE OPTIONAL:Omit

  | | +-soundingRS-UL-ConfigDedicated ::= CHOICE OPTIONAL:Omit

  | | +-antennaInfo ::= CHOICE OPTIONAL:Omit

  | | +-schedulingRequestConfig ::= CHOICE OPTIONAL:Omit

  | | +-EXTENSION ::= SEQUENCE [010]

  | |   +-VERSION-BRACKETS1 ::= SEQUENCE OPTIONAL:Omit

  | |   +-VERSION-BRACKETS2 ::= SEQUENCE [00000111111] OPTIONAL:Exist

  | |   | +-antennaInfo-r10 ::= CHOICE OPTIONAL:Omit

  | |   | +-antennaInfoUL-r10 ::= SEQUENCE OPTIONAL:Omit

  | |   | +-cif-Presence-r10 ::= BOOLEAN OPTIONAL:Omit

  | |   | +-cqi-ReportConfig-r10 ::= SEQUENCE OPTIONAL:Omit

  | |   | +-csi-RS-Config-r10 ::= SEQUENCE OPTIONAL:Omit

  | |   | +-pucch-ConfigDedicated-v1020 ::= SEQUENCE [1111] OPTIONAL:Exist

  | |   | | +-pucch-Format-r10 ::= CHOICE [channelSelection-r10] OPTIONAL:Exist

  | |   | | | +-channelSelection-r10 ::= SEQUENCE [1]

  | |   | | |   +-n1PUCCH-AN-CS-r10 ::= CHOICE [setup] OPTIONAL:Exist

  | |   | | |     +-setup ::= SEQUENCE

  | |   | | |       +-n1PUCCH-AN-CS-List-r10 ::= SEQUENCE OF SIZE(1..2) [2]

  | |   | | |         +-N1PUCCH-AN-CS-r10 ::= SEQUENCE OF SIZE(1..4) [4]

  | |   | | |         | +- ::= INTEGER (0..2047) [10]

  | |   | | |         | +- ::= INTEGER (0..2047) [11]

  | |   | | |         | +- ::= INTEGER (0..2047) [12]

  | |   | | |         | +- ::= INTEGER (0..2047) [13]

  | |   | | |         +-N1PUCCH-AN-CS-r10 ::= SEQUENCE OF SIZE(1..4) [4]

  | |   | | |           +- ::= INTEGER (0..2047) [10]

  | |   | | |           +- ::= INTEGER (0..2047) [11]

  | |   | | |           +- ::= INTEGER (0..2047) [12]

  | |   | | |           +- ::= INTEGER (0..2047) [13]

  | |   | | +-twoAntennaPortActivatedPUCCH-Format1a1b-r10 ::= ENUMERATED [true] OPTIONAL:Exist

  | |   | | +-simultaneousPUCCH-PUSCH-r10 ::= ENUMERATED [true] OPTIONAL:Exist

  | |   | | +-n1PUCCH-AN-RepP1-r10 ::= INTEGER (0..2047) [0] OPTIONAL:Exist

  | |   | +-pusch-ConfigDedicated-v1020 ::= SEQUENCE [000] OPTIONAL:Exist

  | |   | | +-betaOffsetMC-r10 ::= SEQUENCE OPTIONAL:Omit

  | |   | | +-groupHoppingDisabled-r10 ::= ENUMERATED OPTIONAL:Omit

  | |   | | +-dmrs-WithOCC-Activated-r10 ::= ENUMERATED OPTIONAL:Omit

  | |   | +-schedulingRequestConfig-v1020 ::= SEQUENCE [0] OPTIONAL:Exist

  | |   | | +-sr-PUCCH-ResourceIndexP1-r10 ::= INTEGER OPTIONAL:Omit

  | |   | +-soundingRS-UL-ConfigDedicated-v1020 ::= SEQUENCE OPTIONAL:Exist

  | |   | | +-srs-AntennaPort-r10 ::= ENUMERATED [an1]

  | |   | +-soundingRS-UL-ConfigDedicatedAperiodic-r10 ::= CHOICE [setup] OPTIONAL:Exist

  | |   | | +-setup ::= SEQUENCE [11]

  | |   | |   +-srs-ConfigIndexAp-r10 ::= INTEGER (0..31) [0]

  | |   | |   +-srs-ConfigApDCI-Format4-r10 ::= SEQUENCE OF SIZE(1..3) [1] OPTIONAL:Exist

  | |   | |   | +-SRS-ConfigAp-r10 ::= SEQUENCE

  | |   | |   |   +-srs-AntennaPortAp-r10 ::= ENUMERATED [an1]

  | |   | |   |   +-srs-BandwidthAp-r10 ::= ENUMERATED [bw0]

  | |   | |   |   +-freqDomainPositionAp-r10 ::= INTEGER (0..23) [0]

  | |   | |   |   +-transmissionCombAp-r10 ::= INTEGER (0..1) [0]

  | |   | |   |   +-cyclicShiftAp-r10 ::= ENUMERATED [cs0]

  | |   | |   +-srs-ActivateAp-r10 ::= CHOICE [release] OPTIONAL:Exist

  | |   | |     +-release ::= NULL

  | |   | +-uplinkPowerControlDedicated-v1020 ::= SEQUENCE [11] OPTIONAL:Exist

  | |   |   +-deltaTxD-OffsetListPUCCH-r10 ::= SEQUENCE OPTIONAL:Exist

  | |   |   | +-deltaTxD-OffsetPUCCH-Format1-r10 ::= ENUMERATED [dB0]

  | |   |   | +-deltaTxD-OffsetPUCCH-Format1a1b-r10 ::= ENUMERATED [dB0]

  | |   |   | +-deltaTxD-OffsetPUCCH-Format22a2b-r10 ::= ENUMERATED [dB0]

  | |   |   | +-deltaTxD-OffsetPUCCH-Format3-r10 ::= ENUMERATED [dB0]

  | |   |   | +-EXTENSION ::= SEQUENCE

  | |   |   +-pSRS-OffsetAp-r10 ::= INTEGER (0..15) [0] OPTIONAL:Exist

  | |   +-VERSION-BRACKETS3 ::= SEQUENCE OPTIONAL:Omit

  | +-EXTENSION ::= SEQUENCE [00]

  |   +-VERSION-BRACKETS1 ::= SEQUENCE OPTIONAL:Omit

  |   +-VERSION-BRACKETS2 ::= SEQUENCE OPTIONAL:Omit

  +-securityConfigHO ::= SEQUENCE OPTIONAL:Omit

  +-nonCriticalExtension ::= SEQUENCE [01] OPTIONAL:Exist

    +-lateNonCriticalExtension ::= OCTET STRING OPTIONAL:Omit

    +-nonCriticalExtension ::= SEQUENCE [001] OPTIONAL:Exist

      +-otherConfig-r9 ::= SEQUENCE OPTIONAL:Omit

      +-fullConfig-r9 ::= ENUMERATED OPTIONAL:Omit

      +-nonCriticalExtension ::= SEQUENCE [010] OPTIONAL:Exist

        +-sCellToReleaseList-r10 ::= SEQUENCE OF OPTIONAL:Omit

        +-sCellToAddModList-r10 ::= SEQUENCE OF SIZE(1..maxSCell-r10[4]) [1] OPTIONAL:Exist

        | +-SCellToAddMod-r10 ::= SEQUENCE [111]

        |   +-sCellIndex-r10 ::= INTEGER (1..7) [1]

        |   +-cellIdentification-r10 ::= SEQUENCE OPTIONAL:Exist

        |   | +-physCellId-r10 ::= INTEGER (0..503) [2]

        |   | +-dl-CarrierFreq-r10 ::= INTEGER (0..maxEARFCN[65535]) [5790]

        |   +-radioResourceConfigCommonSCell-r10 ::= SEQUENCE [0] OPTIONAL:Exist

        |   | +-nonUL-Configuration-r10 ::= SEQUENCE [00]

        |   | | +-dl-Bandwidth-r10 ::= ENUMERATED [n50]

        |   | | +-antennaInfoCommon-r10 ::= SEQUENCE

        |   | | | +-antennaPortsCount ::= ENUMERATED [an2]

        |   | | +-mbsfn-SubframeConfigList-r10 ::= SEQUENCE OF OPTIONAL:Omit

        |   | | +-phich-Config-r10 ::= SEQUENCE

        |   | | | +-phich-Duration ::= ENUMERATED [normal]

        |   | | | +-phich-Resource ::= ENUMERATED [oneSixth]

        |   | | +-pdsch-ConfigCommon-r10 ::= SEQUENCE

        |   | | | +-referenceSignalPower ::= INTEGER (-60..50) [21]

        |   | | | +-p-b ::= INTEGER (0..3) [1]

        |   | | +-tdd-Config-r10 ::= SEQUENCE OPTIONAL:Omit

        |   | +-ul-Configuration-r10 ::= SEQUENCE OPTIONAL:Omit

        |   | +-EXTENSION ::= SEQUENCE

        |   +-radioResourceConfigDedicatedSCell-r10 ::= SEQUENCE [1] OPTIONAL:Exist

        |   | +-physicalConfigDedicatedSCell-r10 ::= SEQUENCE [11] OPTIONAL:Exist

        |   | | +-nonUL-Configuration-r10 ::= SEQUENCE [1111] OPTIONAL:Exist

        |   | | | +-antennaInfo-r10 ::= SEQUENCE [1] OPTIONAL:Exist

        |   | | | | +-transmissionMode-r10 ::= ENUMERATED [tm3]

        |   | | | | +-codebookSubsetRestriction-r10 ::= BIT STRING SIZE(ALIGNED) [00] OPTIONAL:Exist

        |   | | | | +-ue-TransmitAntennaSelection ::= CHOICE [release]

        |   | | | |   +-release ::= NULL

        |   | | | +-crossCarrierSchedulingConfig-r10 ::= SEQUENCE OPTIONAL:Exist

        |   | | | | +-schedulingCellInfo-r10 ::= CHOICE [own-r10]

        |   | | | |   +-own-r10 ::= SEQUENCE

        |   | | | |     +-cif-Presence-r10 ::= BOOLEAN [FALSE]

        |   | | | +-csi-RS-Config-r10 ::= SEQUENCE [11] OPTIONAL:Exist

        |   | | | | +-csi-RS-r10 ::= CHOICE [setup] OPTIONAL:Exist

        |   | | | | | +-setup ::= SEQUENCE

        |   | | | | |   +-antennaPortsCount-r10 ::= ENUMERATED [an1]

        |   | | | | |   +-resourceConfig-r10 ::= INTEGER (0..31) [0]

        |   | | | | |   +-subframeConfig-r10 ::= INTEGER (0..154) [0]

        |   | | | | |   +-p-C-r10 ::= INTEGER (-8..15) [-8]

        |   | | | | +-zeroTxPowerCSI-RS-r10 ::= CHOICE [setup] OPTIONAL:Exist

        |   | | | |   +-setup ::= SEQUENCE

        |   | | | |     +-zeroTxPowerResourceConfigList-r10 ::= BIT STRING SIZE(16) [0000000000000000]

        |   | | | |     +-zeroTxPowerSubframeConfig-r10 ::= INTEGER (0..154) [0]

        |   | | | +-pdsch-ConfigDedicated-r10 ::= SEQUENCE OPTIONAL:Exist

        |   | | |   +-p-a ::= ENUMERATED [dB-3]

        |   | | +-ul-Configuration-r10 ::= SEQUENCE [1111111] OPTIONAL:Exist

        |   | | | +-antennaInfoUL-r10 ::= SEQUENCE [11] OPTIONAL:Exist

        |   | | | | +-transmissionModeUL-r10 ::= ENUMERATED [tm1] OPTIONAL:Exist

        |   | | | | +-fourAntennaPortActivated-r10 ::= ENUMERATED [setup] OPTIONAL:Exist

        |   | | | +-pusch-ConfigDedicatedSCell-r10 ::= SEQUENCE [11] OPTIONAL:Exist

        |   | | | | +-groupHoppingDisabled-r10 ::= ENUMERATED [true] OPTIONAL:Exist

        |   | | | | +-dmrs-WithOCC-Activated-r10 ::= ENUMERATED [true] OPTIONAL:Exist

        |   | | | +-uplinkPowerControlDedicatedSCell-r10 ::= SEQUENCE [11] OPTIONAL:Exist

        |   | | | | +-p0-UE-PUSCH-r10 ::= INTEGER (-8..7) [-8]

        |   | | | | +-deltaMCS-Enabled-r10 ::= ENUMERATED [en0]

        |   | | | | +-accumulationEnabled-r10 ::= BOOLEAN [FALSE]

        |   | | | | +-pSRS-Offset-r10 ::= INTEGER (0..15) [0]

        |   | | | | +-pSRS-OffsetAp-r10 ::= INTEGER (0..15) [0] OPTIONAL:Exist

        |   | | | | +-filterCoefficient-r10 ::= ENUMERATED [fc0] OPTIONAL:Exist

        |   | | | | +-pathlossReferenceLinking-r10 ::= ENUMERATED [pCell]

        |   | | | +-cqi-ReportConfigSCell-r10 ::= SEQUENCE [111] OPTIONAL:Exist

        |   | | | | +-cqi-ReportModeAperiodic-r10 ::= ENUMERATED [rm12] OPTIONAL:Exist

        |   | | | | +-nomPDSCH-RS-EPRE-Offset-r10 ::= INTEGER (-1..6) [-1]

        |   | | | | +-cqi-ReportPeriodicSCell-r10 ::= CHOICE [setup] OPTIONAL:Exist

        |   | | | | | +-setup ::= SEQUENCE [0000]

        |   | | | | |   +-cqi-PUCCH-ResourceIndex-r10 ::= INTEGER (0..1184) [0]

        |   | | | | |   +-cqi-PUCCH-ResourceIndexP1-r10 ::= INTEGER OPTIONAL:Omit

        |   | | | | |   +-cqi-pmi-ConfigIndex ::= INTEGER (0..1023) [0]

        |   | | | | |   +-cqi-FormatIndicatorPeriodic-r10 ::= CHOICE [widebandCQI-r10]

        |   | | | | |   | +-widebandCQI-r10 ::= SEQUENCE [0]

        |   | | | | |   |   +-csi-ReportMode-r10 ::= ENUMERATED OPTIONAL:Omit

        |   | | | | |   +-ri-ConfigIndex ::= INTEGER OPTIONAL:Omit

        |   | | | | |   +-simultaneousAckNackAndCQI ::= BOOLEAN [FALSE]

        |   | | | | |   +-cqi-Mask-r9 ::= ENUMERATED OPTIONAL:Omit

        |   | | | | |   +-csi-ConfigIndex-r10 ::= CHOICE OPTIONAL:Omit

        |   | | | | +-pmi-RI-Report-r10 ::= ENUMERATED [setup] OPTIONAL:Exist

        |   | | | +-soundingRS-UL-ConfigDedicated-r10 ::= CHOICE [setup] OPTIONAL:Exist

        |   | | | | +-setup ::= SEQUENCE

        |   | | | |   +-srs-Bandwidth ::= ENUMERATED [bw0]

        |   | | | |   +-srs-HoppingBandwidth ::= ENUMERATED [hbw0]

        |   | | | |   +-freqDomainPosition ::= INTEGER (0..23) [0]

        |   | | | |   +-duration ::= BOOLEAN [FALSE]

        |   | | | |   +-srs-ConfigIndex ::= INTEGER (0..1023) [0]

        |   | | | |   +-transmissionComb ::= INTEGER (0..1) [0]

        |   | | | |   +-cyclicShift ::= ENUMERATED [cs0]

        |   | | | +-soundingRS-UL-ConfigDedicated-v1020 ::= SEQUENCE OPTIONAL:Exist

        |   | | | | +-srs-AntennaPort-r10 ::= ENUMERATED [an1]

        |   | | | +-soundingRS-UL-ConfigDedicatedAperiodic-r10 ::= CHOICE [setup] OPTIONAL:Exist

        |   | | |   +-setup ::= SEQUENCE [11]

        |   | | |     +-srs-ConfigIndexAp-r10 ::= INTEGER (0..31) [0]

        |   | | |     +-srs-ConfigApDCI-Format4-r10 ::= SEQUENCE OF SIZE(1..3) [1] OPTIONAL:Exist

        |   | | |     | +-SRS-ConfigAp-r10 ::= SEQUENCE

        |   | | |     |   +-srs-AntennaPortAp-r10 ::= ENUMERATED [an1]

        |   | | |     |   +-srs-BandwidthAp-r10 ::= ENUMERATED [bw0]

        |   | | |     |   +-freqDomainPositionAp-r10 ::= INTEGER (0..23) [0]

        |   | | |     |   +-transmissionCombAp-r10 ::= INTEGER (0..1) [0]

        |   | | |     |   +-cyclicShiftAp-r10 ::= ENUMERATED [cs0]

        |   | | |     +-srs-ActivateAp-r10 ::= CHOICE [release] OPTIONAL:Exist

        |   | | |       +-release ::= NULL

        |   | | +-EXTENSION ::= SEQUENCE

        |   | +-EXTENSION ::= SEQUENCE

        |   +-EXTENSION ::= SEQUENCE


九  Evolution path of Carrier Aggregation / Possible Test Plan

It's already been over an year since the first LTE-A was deployed since July 2013 in Korea and now it is getting spreaded wider. I tried to list up possible evolution path of LTE-A development in terms of chipset development aspect and UE development. This can be a big picture of test plan. I would be good practice if you think on your own about why we need these test and what kind of challenge UE (or chipset) should overcome to pass each of these test. You don't have to get the answers to your question.. just think about it as much as possible and it would let you think about a lot of details.

 

  • 2 CC Aggregation - SISO, Cat 3, PUSCH enabled : HARQ Ack/Nack is carried by PUSCH
  • 2 CC Aggregation - SISO, Cat 3, PUSCH diabled : HARQ Ack/Nack is carried by PUCCH Format 1b
  • 2 CC Aggregation - SISO with CSI Report - Periodic
  • 2 CC Aggregation - SISO with CSI Report - Aperiodic
  • 2 CC Aggregation - SISO, Handover for SCC Change
  • 2 CC Aggregation - SISO, Handover for PCC Change
  • 2 CC Aggregation - SISO, Handover for both SCC and PCC Change
  • 2 CC Aggregation - 2x2 MIMO, Cat 3, PUSCH enabled : HARQ Ack/Nack is carried by PUSCH
  • 2 CC Aggregation - 2x2 MIMO, Cat 3, PUSCH diabled : HARQ Ack/Nack is carried by PUCCH Format 1b
  • 2 CC Aggregation - 2x2 MIMO, Cat 3, 40 Mhz Aggregated BandWidth, 200 Mbps Throughput at IP layer  
  • 2 CC Aggregation - SISO, Cat 4, PUSCH enabled : HARQ Ack/Nack is carried by PUSCH
  • 2 CC Aggregation - SISO, Cat 4, PUSCH diabled :   HARQ Ack/Nack is carried by PUCCH Format 1b
  • 2 CC Aggregation - 2x2 MIMO, Cat 6, MIMO, 20 Mhz Aggregated Bandwidth, 150 Mbps Throughput at IP layer
  • 2 CC Aggregation - 2x2 MIMO, Cat 6, MIMO, 40 Mhz Aggregated Bandwidth, 300 Mbps Throughput at IP layer
  • 2 CC Aggregation - TM 8
  • 2 CC Aggregation - TM 9
  • 3 CC Aggregation - SISO, Cat 6, 30 Mhz Aggregated BW, PUSCH enabled : HARQ Ack/Nack is carried by PUSCH
  • 3 CC Aggregation - SISO, Cat 6, 30 Mhz Aggregated BW,PUSCH diabled : HARQ Ack/Nack is carried by PUCCH Format 3
  • 3 CC Aggregation - 2x2 MIMO, Cat 6, 30 Mhz Aggregated BW, PUSCH enabled : HARQ Ack/Nack is carried by PUSCH
  • 3 CC Aggregation - 2x2 MIMO, Cat 6, 30 Mhz Aggregated BW, PUSCH diabled : HARQ Ack/Nack is carried by PUCCH Format 3
  • 3 CC Aggregation - 2x2 MIMO, Cat 6, 40 Mhz Aggregated BW
  • 3 CC Aggregation - 2x2 MIMO, Cat 6, 60 Mhz Aggregated BW
  • 3 CC Aggregation - 4x4,4x4,4x2 Cat 16, 60 Mhz Aggregated BW
  • 4 CC Aggregation - All 2x2, 80 Mhz Aggregated BW
  • 5 CC Aggregation - All 2x2, 100 Mhz Aggregated BW
  • 5 CC Aggregation - All 4x4, 100 Mhz Aggregated BW

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1159436.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Django3框架-(3)-[使用websocket]:使用channels实现websocket功能;简化的配置和实际使用方式

概述&#xff1a; 对于Django使用channels实现websocket的功能&#xff0c;之前就写了几篇博文了。随着在项目的使用和实际维护来说&#xff0c;重新设置了相关处理方法。 一般来说&#xff0c;前后端都只维护一个全局的连接&#xff0c;通过携带数据来判断具体的操作&#x…

京东协议算法最新版

环境准备 1 com.jingdong.app.mall11.6.4 入口定位 逆向分析&#xff0c;发现 params 里面有一个 sign 以及请求头里面有一个 jdgs 首先我们发现京东的 sign 是 32 位的&#xff0c;猜测其可能是 md5 之类的 hash 算法&#xff0c;既然是 hash 算法&#xff0c;那么就大概率…

程序员不得不知道的三大编程语言,看看你了解吗?

作为一名合格的程序员&#xff0c;不仅要有过硬的技术&#xff0c;还要了解许多基础知识。编程语言可是程序员工作的主力军&#xff0c;但是它是如何产生和发展的&#xff0c;你知道吗&#xff1f;接下来就让我们一起来看看编程语言和它们的发展吧&#xff01;记得点赞加收藏哦…

对 Webpack 的理解

结论先行&#xff1a; Webpack 是目前比较常用的模块打包工具&#xff0c;它能够管理和打包我们开发中所用到的 HTML、 CSS、JS 以及各种静态资源文件。 webpack内部做的事情呢&#xff0c;就是分析出各个模块之间的依赖关系&#xff0c;然后形成资源列表&#xff0c;最终打包…

FL Studio21.2.0.3842中文免费版和谐绿色版本下载

FL Studio21.2.0.3842中文免费版带有 stem 分离和 FL Cloud&#xff0c;这是一项专为 FL Studio 打造的具有里程碑意义的新服务。其他新功能包括 FL Studio Fruity Edition 的 Audio Clips&#xff08;音频剪辑&#xff09;和一个新的模拟建模合成器 Kepler。 为庆祝 FL Studio…

python类如何实例化对象

python类如何实例化对象 1、把类看作是定制的数据类型。既然是类型&#xff0c;只能用来表示数据的类型&#xff0c;不能直接用来保存数据。**要保存数据&#xff0c;首先需要创建一个类似于这类容器的东西&#xff0c;称为对象(或例子)。通过类别产生对象的过程称为例子。 2、…

Windows新建计划任务定时执行脚本

右键-此电脑&#xff0c;选择管理 点击 - 任务计划程序&#xff0c; 选择- 创建基本任务 输入任务描述&#xff0c;点击下一步 选择计划任务周期&#xff0c; 每天/每周等&#xff0c;点击下一步 选择每天任务执行时间&#xff0c;然后点击下一步&#xff0c; 选择启动程序&…

javaEE -15( 13000字 JavaScript入门 - 2)

一&#xff1a;JavaScript(WebAPI) JS 分成三个大的部分 ECMAScript: 基础语法部分DOM API: 操作页面结构BOM API: 操作浏览器 WebAPI 就包含了 DOM BOM&#xff0c;这个是 W3C 组织规定的. (和制定 ECMAScript 标准的大佬们不是一伙人). 前面学的 JS 基础语法主要学的是 …

百度智能云千帆大模型平台黑客马拉松报名开启!

比赛简介 创造是生成式 AI 的核心。无论是智能导购带来的线上购物体验升级&#xff0c;还是主图生成带来的素材生产效率提升&#xff0c;又或是游戏场景的快速设置、智能 NPC 的全新交互、数字广告的精准推荐和个性化定制&#xff0c;亦或者是为学生提供更符合真实的口语练习环…

《高性能MySQL-第三版》学习笔记一

第1章 MySQL架构与历史 1.1 MySQL逻辑架构 表现层&#xff1a;是应用程序的用户界面&#xff08;UI&#xff09;部分&#xff0c;大多数基于网络的客户端/服务器的工具或者服务都有类似的架构。比如连接处理、授权认证、安全等等。逻辑层&#xff1a;查询解析、分析、优化、缓…

王道p18 2.设计一个高效算法,将顺序表L的所有元素逆置,要求算法的空间复杂度为 O(1)。(c语言代码实现)

视频讲解在这&#xff08;支持一下吧&#xff0c;谢谢各位大佬&#xff09;&#xff1a;&#x1f447; c语言代码实现数据结构课后代码题顺序表p18 2_哔哩哔哩_bilibili 本题代码如下 void nizhi(struct sqlist* s) {int temp 0;for (int i 0; i < s->length / 2; i…

第三届iEnglish全国ETP大赛决赛即将启动

如今,寓教于乐的学习方式越来越受到家长和孩子的欢迎,“玩中学”成为一种既能培养兴趣又有助于孩子成长的学习趋势。 以“玩转英语,用iEnglish”为活动主题的第三届全国ETP大赛即将于本周五(11月3日)迎来总决赛的抽签仪式。据主办方iEnglish智能英语学习解决方案相关负责人称,…

如何卸载干净 IDEA(图文讲解)windows和Mac教程

大家好&#xff0c;我是sun~ 很多小伙伴会问 Windows / Mac 系统上要怎么彻底卸载 IDEA 呢&#xff1f; 本文通过图片文字&#xff0c;详细讲解具体步骤&#xff1a; 如何卸载干净 IDEA&#xff08;图文讲解&#xff09; Windows1、卸载 IDEA 程序2、注册表清理3、残留清理 M…

操作系统第四章-存储器管理

4.1 内存的基本知识 4.1.1 逻辑地址和物理地址 逻辑地址又称为相对地址 物理地址又称为绝对地址 一. 逻辑地址 内存中有多个进程,相对地址是相对于进程的起始地址而言的地址. 二.物理地址 绝对地址是在整个内存下的地址 4.2 程序的装入和链接 引入:用户程序要在系统中运…

什么是智慧燃气,智慧燃气解析干货!

关键词&#xff1a;智慧燃气、智慧燃气系统、智慧燃气平台、智能燃气、燃气智能管网、数据挖掘 在互联网技术、无线通信技术、物联网技术、卫星通信技术、大数据、云计算技术飞速发展的今天&#xff0c;业界提出了“智慧城市”的概念。智慧城市的范围很广&#xff0c;包含智慧…

Flask 网站装潢, 简易更换模板

Flask 网站装潢&#xff0c;简易更换模板 本博文找个好看的网页模板&#xff0c;并简单改一改变成flask模板&#xff0c;并展示 主博客目录&#xff1a;《从零开始学习搭建量化平台笔记》 文章目录 Flask 网站装潢&#xff0c;简易更换模板下载模板Python 自动生成目录修改目录…

@reduxjs/toolkit配置react-redux解决createStore或将在未来被淘汰警告

通常 我们用redux都需要通过 createStore 但目前 你去用它 基本都会被划线 甚至有点厉害的的编辑器 他会直接告诉你这个东西基本快被弃用了 这个应该大家都知道 最好不要用已经被明确未来或弃用的语法 因为一旦弃用这个系统就需要维护 而且说 一般会被淘汰的语法 本身也就是有…

编程怎么学才高效?初学编程怎么样才容易入门?

学习编程并提高编程能力需要一种结构化的方法&#xff0c;其中包括理解基础概念、实践、反馈和持续学习。以下是一些高效学习编程的策略&#xff1a; 理解基础概念&#xff1a;在学习编程的初期&#xff0c;理解基础概念非常重要。这包括学习编程语言的基本语法、数据类型、控…

嵌入式与单片机之间的关系是什么?

今日话题&#xff0c;嵌入式与单片机之间的关系是什么&#xff1f;可以这样理解&#xff1a;嵌入式系统是一个大的范畴&#xff0c;而单片机则是嵌入式系统中的一个重要子类。通常情况下&#xff0c;制造商出厂的通用单片机内并没有预装应用程序&#xff0c;因此无法直接运行。…

799. 最长连续不重复子序列 java

目录 算法描述 输入格式 输出格式 数据范围 输入样例&#xff1a; 输出样例&#xff1a; 代码 算法分析 算法描述 给定一个长度为 n&#xfffd; 的整数序列&#xff0c;请找出最长的不包含重复的数的连续区间&#xff0c;输出它的长度。 输入格式 第一行包含整数 n&…