【OpenCV实现图像找到轮廓的不同特征,就像面积,周长,质心,边界框等等。】

news2025/2/27 23:18:23

文章目录

    • 概要
    • 图像矩
    • 凸包
    • 边界矩形

概要

OpenCV是一个流行的计算机视觉库,它提供了许多图像处理和分析功能,其中包括查找图像中物体的轮廓。通过查找轮廓,可以提取许多有用的特征,如面积、周长、质心、边界框等。

以下是几种使用OpenCV查找轮廓时常见的特征:

面积:可以使用 cv2.contourArea() 函数计算轮廓的面积。该函数将轮廓作为输入,并返回浮点数表示轮廓的面积。

周长:可以使用 cv2.arcLength() 函数计算轮廓的周长。该函数将轮廓作为输入,并返回浮点数表示轮廓的周长。

质心:可以使用 cv2.moments() 函数计算轮廓的质心。该函数将轮廓作为输入,并返回一个字典,其中包含轮廓的各种矩形,包括轮廓的质心。

边界框:使用 cv2.boundingRect() 函数可以计算轮廓的边界框。该函数将轮廓作为输入,并返回一个元组,其中包括边界框的x和y坐标以及宽度和高度。

最小区域矩形:使用 cv2.minAreaRect() 函数可以计算轮廓的最小区域矩形。该函数将轮廓作为输入,并返回一个元组,其中包括矩形的中心坐标、宽度和高度以及角度。

最小外接圆:使用 cv2.minEnclosingCircle() 函数可以计算轮廓的最小外接圆。该函数将轮廓作为输入,并返回一个元组,其中包括圆心坐标和半径。

这些特征可以用于描述轮廓并提取有用的信息。例如,面积和周长可以用于分类和识别物体,质心可以用于跟踪物体的运动,边界框和最小区域矩形可以用于确定物体的位置和方向,最小外接圆可以用于确定物体的大小。

图像矩

图像矩可以帮助您计算一些特征,如物体的质心、物体的面积等。函数 cv.moments() 提供了一个计算出所有矩值的字典。代码如下:

import numpy as np
import cv2 as cv

img = cv.imread('star.jpg', 0)
ret, thresh = cv.threshold(img, 127, 255, 0)
contours, hierarchy = cv.findContours(thresh, 1, 2)

cnt = contours[0]
M = cv.moments(cnt)
print(M)

在这个M中,你可以提取有用的数据,如面积,质心等等。质心由如下关系式给出:
在这里插入图片描述
代码如下:

cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])

轮廓面积
轮廓面积可以通过函数 cv.contourArea() 或者是 M[‘m00’] 得到。

area = cv.contourArea(cnt)

轮廓周长
它也被称为弧长。它可以由函数 cv.arcLength() 得到。第二个参数需要指名形状是否闭合,闭合传入 True,否则传入 False。

perimeter = cv.arcLength(cnt, True)

轮廓近似
OpenCV中的approxPolyDP()函数是一个实现了Douglas-Peucker算法的轮廓近似函数。该函数可以将一个轮廓形状近似为另一个顶点数量较少的形状,精度取决于我们指定的参数epsilon。

例如,如果我们想要在图像中找到一个正方形,但由于图像中的噪声或其他因素,我们无法得到完美的正方形轮廓。此时,我们可以使用approxPolyDP()函数来近似轮廓形状,从而得到更接近真实形状的结果。在这种情况下,我们需要选择一个合适的epsilon值来控制近似精度。通常建议将epsilon设置为原始轮廓周长的一定比例,例如0.1*cv.arcLength(cnt, True)。

使用approxPolyDP()函数可以减少轮廓的顶点数量,从而提高图像处理和分析的效率和准确性。

epsilon = 0.1*cv.arcLength(cnt, True)
approx = cv.approxPolyDP(cnt, epsilon, True)

凸包

hull = cv.convexHull(points[, hull[, clockwise[, returnPoints]]])

参数详细信息:

•points 是我们穿过的轮廓。
•clockwise:方向标志。如果为True,则输出凸包的方向为顺时针方向。否则,其方向为逆时针方向。
•returnPoints:默认情况下为True。它会返回外壳点的坐标。如果为False,则返回与外壳点相对应的轮廓点的索引。

所以要得到上图中的凸包,以下就足够了:

hull = cv.convexHull(cnt)

但是,如果要查找凸性缺陷,则需要传递returnPoints=False。为了理解它,我们将拍摄上面的矩形图像。首先我发现它的轮廓是cnt。现在我找到了它的凸包,returnPoints=True,我得到了以下值:[[234 202]],[[51 202]],[[51 79]],[[234 79]],它们是矩形的四个角点。现在,如果returnPoints=False也这样做,我得到以下结果:[[129],[67],[0],[142]]。这些是等高线中对应点的索引。例如,检查第一个值:cnt[129]=[[234202]],该值与第一个结果相同(其他值依此类推)。

cv2.convexHull()函数的语法如下:

hull = cv2.convexHull(points[, hull[, clockwise[, returnPoints]]])

其中,参数的详细信息如下:

• points:表示我们要找凸包的轮廓。

• clockwise:方向标志。如果为True,则输出凸包的方向为顺时针方向;否则,其方向为逆时针方向。

• returnPoints:默认情况下为True。它会返回外壳点的坐标。如果为False,则返回与外壳点相对应的轮廓点的索引。

因此,如果我们只需要得到轮廓的凸包,则可以使用以下代码:

hull = cv2.convexHull(cnt)

但是,如果需要查找凸性缺陷,则需要将returnPoints设置为False。为了更好地理解其含义,考虑以下矩形图像。首先,我们找到了矩形的轮廓cnt。接着,我们使用returnPoints=True选项来计算其凸包,得到以下四个点的坐标值:[[234 202]],[[51 202]],[[51 79]],[[234 79]]。这些坐标值是矩形四个角的点。现在,如果我们将returnPoints设置为False,得到的将是以下四个点的索引值:[[129], [67], [0], [142]]。这些是轮廓数组中对应点的索引值。例如,第一个值129表示cnt[129]=[[234 202]],该值与前面求得的第一个凸包点的坐标值相同(其他索引值也类似)。

检查凸性
有一个函数可以检查曲线是否是凸的,cv.isContourConvex()。它只返回True或False。

k = cv.isContourConvex(cnt)

边界矩形

边界矩形是用于包围对象或轮廓的矩形形状。有两种类型的边界矩形:

7.a. 直边界矩形:
直边界矩形是一个简单的矩形,不考虑对象的旋转。它可以通过使用cv2.boundingRect()函数来找到。该函数返回一个四元组(x,y,w,h),其中(x,y)表示矩形左上角的坐标,(w,h)表示矩形的宽度和高度。

x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

以上代码将在图像img上绘制一个矩形,框住了轮廓cnt所代表的对象。

7.b. 旋转矩形:
旋转矩形是根据对象的最小面积绘制的矩形,并考虑了对象的旋转。要获得旋转矩形,可以使用cv2.minAreaRect()函数。该函数返回一个Box2D结构,其中包含矩形的中心坐标(x,y)、宽度和高度(w,h),以及旋转角度。

要绘制旋转矩形,我们需要得到矩形的四个角点。可以使用cv2.boxPoints()函数获得这些角点,该函数将旋转矩形作为参数,并返回一个数组包含四个角点的坐标。

rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img, [box], 0, (0, 0, 255), 2)

以上代码将在图像img上绘制一个红色边界框,该边界框是根据轮廓cnt的最小面积旋转矩形计算而来。
最小外接圆

# 导入OpenCV库
import cv2 as cv

# 使用cv.minEnclosingCircle()找到最小外接圆
(x, y), radius = cv.minEnclosingCircle(cnt)
center = (int(x), int(y))
radius = int(radius)

# 在图像上绘制最小外接圆
cv.circle(img, center, radius, (0, 255, 0), 2)

# 显示图像
cv.imshow('最小外接圆', img)

拟合椭圆

# 使用cv.fitEllipse()将椭圆拟合到对象上
ellipse = cv.fitEllipse(cnt)

# 在图像上绘制拟合的椭圆
cv.ellipse(img, ellipse, (0, 255, 0), 2)

# 显示图像
cv.imshow('拟合椭圆', img)

直线拟合

# 获取图像的行和列数
rows, cols = img.shape[:2]

# 使用cv.fitLine()将直线拟合到一组点上
[vx, vy, x, y] = cv.fitLine(cnt, cv.DIST_L2, 0, 0.01, 0.01)
lefty = int((-x * vy / vx) + y)
righty = int(((cols - x) * vy / vx) + y)

# 在图像上绘制拟合的直线
cv.line(img, (cols - 1, righty), (0, lefty), (0, 255, 0), 2)

# 显示图像
cv.imshow('直线拟合', img)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1158309.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

双目视觉检测 KX02-SY1000型测宽仪 有效修正和消除距离变化对测量的影响

双目视觉检测的基本原理 利用相机测量宽度时,由于单个相机在成像时存在“近大远小”的现象,并且单靠摄入的图像无法知道被测物的距离,所以由被测物的跳动导致的被测物到工业相机之间距离变化,使测量精度难以提高。 因此测宽仪需…

Vue项目创建与启动(2023超详细的图文教程)

目录 一、下载node.js 二、下载vue-cli与webpack插件 三、项目初始化(项目配置详细信息) 四、项目启动 五、Vue项目工程结构(扩展知识) 一、下载node.js 1.检测是否已经安装过node.js 打开控制台,输入 npm -v如果有会显示对应版本 如果没有会显示…

RocketMQ消费者和队列对应关系

参考 RocketMQ 5.0 POP 消费模式探秘 https://www.cnblogs.com/alisystemsoftware/p/15535925.html 旧版本MQ结论 消费者应用和topic队列一对多的关系。 (一个消费组consumer group里,一个消费者应用可以消费多个队列的消息。一个队列的消息只能被一个…

矩阵分块例子

有如下矩阵A和B 对A列分块, B行分块后结果如下 对A行分块, B列分块后结果如下

企业网络带宽使用情况检查技巧

想要提高网络性能的企业通常会考虑限制对占用带宽的应用程序(如社交媒体和视频流应用程序)的访问,但对于那些真正需要获得高效网络的人来说,这还不够,您需要定期跟踪带宽使用情况。 虽然有许多工具可以帮助您检查网络…

Webpack的代码分割(code splitting)

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

干洗店服务预约小程序有什么作用

要说干洗店,近些年的需求度非常高,一方面是人们生活品质提升,另一方面则是各种服饰对洗涤要求提升等,很多人的衣服很多也会通过干洗店进行清洁。 而对从业商家来说,市场庞大一方面需要不断进行市场教育、品牌提升&…

Python自动化测试实战篇:unittest框架详解

为什么要学习unittest 按照测试阶段来划分,可以将测试分为单元测试、集成测试、系统测试和验收测试。单元测试是指对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,通常指函数或者类,一般是开发完成的。 单元…

CMake:构建时为特定目标运行自定义命令

CMake:构建时为特定目标运行自定义命令 导言项目结构相关源码结果 导言 add_custom_command 是 CMake 中用于添加自定义构建规则的命令,通常用于在编译项目时执行一些自定义操作,例如生成文件、运行脚本等。 项目结构 . ├── CMakeLists…

《web前端开发技术》初识Vue + 第一个 Vue程序:hello world

目录 2.1 Vue 简述 2.1.1 什么是 Vue 2.1.2 为什么选择 Vue 2.2 Vue 的三种安装方式 2.1 Vue 简述 Vue 在 JavaScript 前端开发库领域属于后来者,其他前端开发库有 jQuery、ExtJS、 Anguals、React 等。 2.1.1 什么是 Vue 😶‍🌫️Vue (…

树结构及其算法-二叉树遍历

目录 树结构及其算法-二叉树遍历 一、中序遍历 二、后序遍历 三、前序遍历 C代码 树结构及其算法-二叉树遍历 我们知道线性数组或链表都只能单向从头至尾遍历或反向遍历。所谓二叉树的遍历(Binary Tree Traversal),简单的说法就是访问树…

Aqua Data Studio 2023.1

为什么选择 Aqua Data Studio? 随着数据在业务中的作用不断发展,组织需要一种有效的方法来简化复杂的技术任务并缩小 IT 和业务团队之间的差距。 使用多个数据库平台不再复杂。使用 Aqua Data Studio 简化您的所有数据管理流程和任务:这是一…

[JavaWeb]——获取请求参数的方式(全面!!!)

🌈键盘敲烂,年薪30万🌈 目录 1.普通类型 1.1原始方式(了解) 1.2springboot方式(推荐) 2.实体类型 2.1简单实体类型 2.2实体类型里还有实体类型(内部类) 3.数组或集合类型 3.1数组 3.2集合 4.🔥JSON格式 常用 5.日期类型…

CS224W4.3——Random Walk with Restarts

我们讨论了个性化PageRank,它对节点与查询节点S的给定子集(即teleportation set)的接近程度进行排名,以及随机行走(Random Walk),它对从单个起始节点到对节点接近程度进行随机行走建模。我们将演示这些算法是如何与PageRank的原始定义相关联的…

el-table树状表格末行合计

首先,由于我的表头是动态的,所以就稍微复杂一点 效果图 表头数据格式是这样的 表格的数据格式是这样的 然后用合并的方法,此处就需要递归去计算,根据props去匹配每一列的数据,然后加起来,关键代码 //合计处理getSummaries(param) {const { columns, data } param;const su…

蜂邮个人可以注册吗?注册蜂邮EDM的教程!

被问了100遍的邮件营销系统蜂邮EDM个人该怎么注册? 蜂邮EDM是一个强大的邮件营销系统,不仅适用于企业,个人用户也可以注册并使用。如果你一直在思考如何注册蜂邮EDM,不要担心,今天我将为你提供一份详细的注册教程&…

基于深度学习的口罩佩戴检测

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介二、功能三、基于深度学习的口罩佩戴检测四. 总结 一项目简介 基于深度学习的口罩佩戴检测是一种利用计算机视觉技术和深度学习算法进行口罩佩戴情况检测的…

小白怎么学习性能测试?一文7个知识点带你成功入门!

1.什么是性能测试 性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。负载测试和压力测试都属于性能测试,两者可以结合进行。通过负载测试,确定在各种工作负载下系统的性能,目标是测试当负…

3.15每日一题(分部积分求不定积分)

注意看分子分母的变化,可以相消

mac下载安装jenkins

下载 选择2.1.64版本 (需要jdk8,自行下载, ) https://archives.jenkins.io/war/2.164/jenkins.war 启动 使用命令行启动 java -jar jenkins.war 浏览器访问 IP:8080 或 localhost:8080 ,对jenkins进行配置&#xf…