竞赛选题 深度学习图像风格迁移

news2024/11/20 20:34:56

文章目录

  • 0 前言
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像风格迁移 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):
    content_layers = [('relu3_3', 1.0)]
    content_loss = 0.0
    # 逐个取出衡量内容损失的vgg层名称及对应权重
    for layer_name, weight in content_layers:

        # 计算特征矩阵
        p = get_vgg(content_img, layer_name)
        x = get_vgg(rand_img, layer_name)
        # 长x宽xchannel
        M = p.shape[1] * p.shape[2] * p.shape[3]

        # 根据公式计算损失,并进行累加
        content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight

    # 将损失对层数取平均
    content_loss /= len(content_layers)
    return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):
    x = tf.reshape(x, (size, deep))
    g = tf.matmul(tf.transpose(x), x)
    return g

def style_loss(style_img, rand_img):
    style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]
    style_loss = 0.0
    # 逐个取出衡量风格损失的vgg层名称及对应权重
    for layer_name, weight in style_layers:

        # 计算特征矩阵
        a = get_vgg(style_img, layer_name)
        x = get_vgg(rand_img, layer_name)

        # 长x宽
        M = a.shape[1] * a.shape[2]
        N = a.shape[3]

        # 计算gram矩阵
        A = gram(a, M, N)
        G = gram(x, M, N)

        # 根据公式计算损失,并进行累加
        style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
    # 将损失对层数取平均
    style_loss /= len(style_layers)
    return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():
            # 生成图片
            rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)
            with tf.Session() as sess:
    
                content_img = cv2.imread('content.jpg')
                style_img = cv2.imread('style.jpg')
            
                # 计算loss值
                cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)
                optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
            
                sess.run(tf.global_variables_initializer())
                
                for step in range(TRAIN_STEPS):
                    # 训练
                    sess.run([optimizer,  rand_img])
            
                    if step % 50 == 0:
                        img = sess.run(rand_img)
                        img = np.clip(img, 0, 255).astype(np.uint8)
                        name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                        cv2.imwrite(name, img)
    
    
    

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():
    layers=(
        'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
        'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
        'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
        'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
        'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
    )
    vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
    weights = vgg['layers'][0]

    network={}
    net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
    network['input'] = net
    for i,name in enumerate(layers):
        layer_type=name[:4]
        if layer_type=='conv':
            kernels = weights[i][0][0][0][0][0]
            bias = weights[i][0][0][0][0][1]
            conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
            net=tf.nn.relu(conv + bias)
        elif layer_type=='pool':
            net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
        network[name]=net
    return network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:



    import tensorflow as tf
    import numpy as np
    import scipy.io
    import cv2
    import scipy.misc
    
    HEIGHT = 300
    WIGHT = 450
    LEARNING_RATE = 1.0
    NOISE = 0.5
    ALPHA = 1
    BETA = 500
    
    TRAIN_STEPS = 200
    
    OUTPUT_IMAGE = "D://python//img"
    STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
    CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]


    def vgg19():
        layers=(
            'conv1_1','relu1_1','conv1_2','relu1_2','pool1',
            'conv2_1','relu2_1','conv2_2','relu2_2','pool2',
            'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3',
            'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4',
            'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5'
        )
        vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')
        weights = vgg['layers'][0]
    
        network={}
        net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)
        network['input'] = net
        for i,name in enumerate(layers):
            layer_type=name[:4]
            if layer_type=='conv':
                kernels = weights[i][0][0][0][0][0]
                bias = weights[i][0][0][0][0][1]
                conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)
                net=tf.nn.relu(conv + bias)
            elif layer_type=='pool':
                net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')
            network[name]=net
        return network


    # 求gamm矩阵
    def gram(x, size, deep):
        x = tf.reshape(x, (size, deep))
        g = tf.matmul(tf.transpose(x), x)
        return g


    def style_loss(sess, style_neck, model):
        style_loss = 0.0
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = style_neck[layer_name]
            x = model[layer_name]
            # 长x宽
            M = a.shape[1] * a.shape[2]
            N = a.shape[3]
    
            # 计算gram矩阵
            A = gram(a, M, N)
            G = gram(x, M, N)
    
            # 根据公式计算损失,并进行累加
            style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight
            # 将损失对层数取平均
        style_loss /= len(STYLE_LAUERS)
        return style_loss


    def content_loss(sess, content_neck, model):
        content_loss = 0.0
        # 逐个取出衡量内容损失的vgg层名称及对应权重
    
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = content_neck[layer_name]
            x = model[layer_name]
            # 长x宽xchannel
    
            M = p.shape[1] * p.shape[2]
            N = p.shape[3]
    
            lss = 1.0 / (M * N)
            content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight
            # 根据公式计算损失,并进行累加
    
        # 将损失对层数取平均
        content_loss /= len(CONTENT_LAYERS)
        return content_loss


    def random_img(height, weight, content_img):
        noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])
        random_img = noise_image * NOISE + content_img * (1 - NOISE)
        return random_img

   

    def get_neck(sess, model, content_img, style_img):
        sess.run(tf.assign(model['input'], content_img))
        content_neck = {}
        for layer_name, weight in CONTENT_LAYERS:
            # 计算特征矩阵
            p = sess.run(model[layer_name])
            content_neck[layer_name] = p
        sess.run(tf.assign(model['input'], style_img))
        style_content = {}
        for layer_name, weight in STYLE_LAUERS:
            # 计算特征矩阵
            a = sess.run(model[layer_name])
            style_content[layer_name] = a
        return content_neck, style_content


    def main():
        model = vgg19()
        content_img = cv2.imread('D://a//content1.jpg')
        content_img = cv2.resize(content_img, (450, 300))
        content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
        style_img = cv2.imread('D://a//style1.jpg')
        style_img = cv2.resize(style_img, (450, 300))
        style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]
    
        # 生成图片
        rand_img = random_img(HEIGHT, WIGHT, content_img)
    
        with tf.Session() as sess:
            # 计算loss值
            content_neck, style_neck = get_neck(sess, model, content_img, style_img)
            cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)
            optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)
    
            sess.run(tf.global_variables_initializer())
            sess.run(tf.assign(model['input'], rand_img))
            for step in range(TRAIN_STEPS):
                print(step)
                # 训练
                sess.run(optimizer)
    
                if step % 10 == 0:
                    img = sess.run(model['input'])
                    img += [128, 128, 128]
                    img = np.clip(img, 0, 255).astype(np.uint8)
                    name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"
                    img = img[0]
                    cv2.imwrite(name, img)
    
            img = sess.run(model['input'])
            img += [128, 128, 128]
            img = np.clip(img, 0, 255).astype(np.uint8)
            cv2.imwrite("D://end.jpg", img[0])
    
    main()



7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1154698.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

你真的会学习网络安全吗?

我敢说,现在网上90%的文章都没有把网络安全该学的东西讲清楚。 为什么?因为全网更多的都是在讲如何去渗透和公鸡,却没有把网安最注重的防御讲明白。 老话说得好:“攻击,是为了更好的防御。”如果连初衷都忘了&#xff…

Grafana 图表 Table 根据 Key 修改背景颜色

文章目录 前言1. 配置过程1.1 创建 override1.2 Add override property1.3 Value mappings 2. 效果展示 前言 需要配置一个备份任务的 Dashboard 展示备份的状态,如果备份状态是 Completed 表示正常(绿色背景),如果是 Error 表示…

LOGO设计工具都有哪些?分享这6款

如果一个品牌想要脱颖而出,它必须有一个令人印象深刻的品牌标志。创建一个专业的标志,设计师不能简单地用刷子手绘,必须使用专业的标志设计软件来制作。 市场上有各种各样的标志设计软件:桌面、在线应用、免费,甚至人…

Kubernetes深度剖析,从基础到高级,带你领略K8s的魅力

一、Kubernetes 是 Google 团队发起并维护的基于 Docker 的开源容器集群管理系统,它不仅支持常见的云平台,而且支持内部数据中心。 建于 Docker 之上的 Kubernetes 可以构建一个容器的调度服务,其目的是让用户透过 Kubernetes 集群来进行云端…

星环科技分布式向量数据库Transwarp Hippo正式发布,拓展大语言模型时间和空间维度

随着企业、机构中非结构化数据应用的日益增多以及AI的爆发式增长所带来的大量生成式数据,所涉及的数据呈现了体量大、格式和存储方式多样、处理速度要求高、潜在价值大等特点。但传统数据平台对这些数据的处理能力较为有限,如使用文件系统、多类不同数据…

0002net程序设计-net家电维修保养信息系统

文章目录 **摘要**目录系统设计开发环境 摘要 家电维修保养信息系统提供给用户一个家电信息管理的网站,最新的家电信息让用户及时了解维修知识,保养方式的同时,还能通过交流区互动更方便。本系统采用了B/S体系的结构,使用了net技术以及SQL SERVER作为后…

uniapp 关于 video 组件的缩放比例问题

在 container 样式的 padding-bottom 设置比例值 9/16 比例值&#xff1a;56.25% 3/4 比例值&#xff1a;75% <view class"container"><video class"video-box" src"xxx.mp4" /> </view> .container {position: relative;wid…

【STL】:list用法详解

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关list的使用&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入门到精通 数据结构…

SQL注入思路扩展

目录 一、资产搜集 二、开始sql注入常规流程 三、sqlmap验证 总结&#xff1a;测试sql注入的时候不要只局限于明文传输&#xff0c;也要注意编码或者加密后的值。 还没看够&#xff1f;欢迎关注&#xff0c;带你走进黑客世界&#xff0c;下面也有免费的靶场视频 一、资产搜…

HCIA --- 综合实验(结束)

一、实验拓扑及要求 二、整体IP规划 三、解决方案 四、解决步骤配置命令 一、基本部分 一、交换机 1、创建对应VLAN&#xff0c;对应接口划入对应VLAN中&#xff0c;创建Trunk干道&#xff0c;配置HTTP服务器IP LSW1 [sw1]vlan batch 2 to 3 [sw1]interface e0/0/1 [sw1-E…

idea提交代码一直提示 log into gitee

解决idea提交代码一直提示 log into gitee问题 文章目录 打开setting->Version control->gitee,删除旧账号&#xff0c;重新配置账号&#xff0c;删除重新登录就好 打开setting->Version control->gitee,删除旧账号&#xff0c;重新配置账号&#xff0c;删除重新登…

部署前端项目到宝塔面板(腾讯阿里服务器均适用)

写在前面&#xff0c;本网站部署的是前端nuxt.js项目&#xff0c;后端部分在本人的其他博文&#xff0c;请移步 【起步】服务器端 打开自己的轻量服务器的管理面板 确保服务器已经打开&#xff0c;如下图所示 来到域名列表&#xff0c;解析域名&#xff0c;如下图所示 的…

[转载]C++序列化框架介绍和对比

Google Protocol Buffers Protocol buffers 是一种语言中立&#xff0c;平台无关&#xff0c;可扩展的序列化数据的格式&#xff0c;可用于通信协议&#xff0c;数据存储等。 Protocol buffers 在序列化数据方面&#xff0c;它是灵活的&#xff0c;高效的。相比于 XML 来说&…

怎么理解电流超前电压、电压超前电流?

电容和电感&#xff0c;电压超前电流&#xff0c;电流超前电压都是我们经常听到的。作为非专业人士&#xff0c;这些听起来确实有点摸不着头脑&#xff0c;今天特别查了下电容、电感、电压电流相关资料&#xff0c;总算是弄明白了&#xff0c;在此特地记录下&#xff01; 1. 电…

打造企业级门户,WorkPlus助您打造个性化与高效的企业通讯平台

在现代企业运营中&#xff0c;良好的内部沟通与信息管理至关重要。为满足企业对于高效沟通与信息发布的需求&#xff0c;WorkPlus推出了企业门户APP&#xff0c;为企业提供全新的信息管理与沟通协作体验。 作为一站式企业门户&#xff0c;WorkPlus连接了组织、员工和信息的纽带…

GitLab(2)——Docker方式安装Gitlab

目录 一、前言 二、安装Gitlab 1. 搜索gitlab-ce镜像 2. 下载镜像 3. 查看镜像 4. 提前创建挂载数据卷 5. 运行镜像 三、配置Gitlab文件 1. 配置容器中的/etc/gitlab/gitlab.rb文件 2. 重启容器 3. 登录Gitalb ① 查看初始root用户的密码 ② 访问gitlab地址&#…

阿里云国际版和国内版的区别是什么,为什么很多人喜欢选择国际版?

阿里云国际版和国内版区别如下&#xff1a; 谈到区别&#xff0c;我们不妨先来对比下相同点与不同点&#xff0c;才能清晰明确的知道二者区别 下面先介绍不同点&#xff1a; 面向市场更广泛 阿里云国际版主要是面向国际&#xff08;全球&#xff09;客户的&#xff0c;而国内…

如何用ChatGPT快速写出一份合格的PPT报告

我们【AI写稿专家】的小伙伴中有很多企业高管和公务员&#xff0c;大家经常有写报告写ppt的需求&#xff0c;下面小编给大家介绍一下我们新发布生成PPT的功能&#xff0c;很简单很方便&#xff0c;看完大家不到1分钟就能生成一份拿得出手的PPT报告&#xff0c;再也不用费尽心思…

华为云之使用CCE云容器引擎部署Nginx应用【玩转华为云】

华为云之使用CCE云容器引擎部署Nginx应用【玩转华为云】 一、本次实践介绍1.本次实践简介2.本次实践目的 二、CEE介绍1.CCE简介2.CCE产品链接 三、创建虚拟私有云VPC1.访问VPC2.创建VPC3.查看VPC列表 四、创建密钥对1.进入密钥对界面2.创建密钥对3.保存密钥文件到本地 五、创建…

Softing dataFEED OPC Suite将西门子PLC数据存储到Oracle数据库中

一 背景 现代工业产品生产批量大、过程自动化程度高&#xff0c;这对于用户追溯产品设计与制造过程中产生的数据而言&#xff0c;无疑是一大新挑战。与此同时&#xff0c;制造商们对产品制造过程中产生的大量工艺数据也愈发重视&#xff0c;并在不断寻求存储与分析产品制造数据…