基于探路者算法的无人机航迹规划-附代码

news2025/1/8 5:46:48

基于探路者算法的无人机航迹规划

文章目录

  • 基于探路者算法的无人机航迹规划
    • 1.探路者搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用探路者算法来优化无人机航迹规划。

1.探路者搜索算法

探路者算法原理请参考:https://blog.csdn.net/u011835903/article/details/112292996

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得探路者搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用探路者算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,探路者算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1152428.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode 2742.给墙壁刷油漆

思路 dp(u,count)为当前再考虑下标为1-u的墙面&#xff0c;并且还有count免费工次的最小代价 主要是递归边界的选择&#xff1a; u1<count return 0; if(u-1&&count<0)return 0x3f3f3f3f; if(u-1&&count0)retrun 0; 这三个可以合并成 if(u<count) …

k8s基本操作命令

目录 1、//查看资源对象简写 2、//查看集群信息 3、//配置kubectl自动补全 4、//node节点查看日志 5、//查看 master 节点状态 6、//查看命令空间 7、//查看default命名空间的所有资源 8、//创建命名空间app 9、//删除命名空间app 10、//在命名空间kube-public 创建…

量子计算与量子密码(入门级-少图版)

量子计算与量子密码 写在最前面一些可能带来的有趣的知识和潜在的收获 1、Introduction导言四个特性不确定性&#xff08;自由意志论&#xff09;Indeterminism不确定性Uncertainty叠加原理(线性)superposition (linearity)纠缠entanglement 虚数的常见基本运算欧拉公式&#x…

指针运算笔试题解析(2)

指针运算笔试题解析 题目一解析 题目二解析 压轴题&#xff08;困难&#xff09;解析 题目一 #include <stdio.h> int main() {int aa[2][5] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };int *ptr1 (int *)(&aa 1);int *ptr2 (int *)(*(aa 1));printf( "%d&#x…

学习笔记二十五:持久化存储

这里写目录标题 在k8s中为什么要做持久化存储查看k8s支持哪些存储常用的如下&#xff1a;使用存储卷&#xff0c;需要经历如下步骤 k8s持久化存储&#xff1a;emptyDirk8s持久化存储&#xff1a;hostPathhostpath存储卷缺点 k8s持久化存储&#xff1a;nfs搭建nfs服务k8snode2和…

Vue+Echarts 图表 x轴y轴添加单位字段

需求 代码 两个选择其中一个即可&#xff0c;Y轴也是如此设置 xAxis:{name: 月,// 这个设置只在末尾添加单位axisLabel: {formatter: {value}月 // 在每个x轴坐标都添加了单位} }yAxis:{name: 月,// 这个设置只在末尾添加单位axisLabel: {formatter: {value}月 // 在每个x轴坐…

这个提示词,别人不说,自己绝对想不到

AGI火了一年了&#xff0c;不知道大家的热情还在不在&#xff0c;还有没有在跟进相关的知识&#xff0c;技术&#xff0c;工具与最佳实践。对于我&#xff0c;Claude已经是常驻电脑右下角。 很多朋友问我&#xff0c;说哪些岗位会被颠覆掉&#xff0c;哪些人会被淘汰&#xff0…

【Redis】高并发分布式结构服务器

文章目录 服务端高并发分布式结构名词基本概念评价指标1.单机架构缺点 2.应用数据分离架构应用服务集群架构读写分离/主从分离架构引入缓存-冷热分离架构分库分表&#xff08;垂直分库&#xff09;业务拆分⸺微服务 总结 服务端高并发分布式结构 名词基本概念 应⽤&#xff0…

Mac电脑Android Studio和VS Code配置Flutter开发环境(图文超详细)

一、安装Android Studio 官网地址&#xff1a; https://developer.android.google.cn/ 历史版本下载地址&#xff1a; https://developer.android.com/studio/archive?hlzh-cn 二、安装Xcode 到App Store下载安装最新版本&#xff0c;如果MacOS更新不到13.0以上就无法安装…

Ajax学习笔记第5天

无论做什么&#xff0c;都请记得那是为自己而做&#xff0c;那就毫无怨言&#xff01; 【1. 跨域】 1.什么是跨域 跨域是指浏览器不能执行其他网站的脚本。它是浏览器同源策略造成的&#xff0c;是浏览器对JS实施的安全限制。 2.常见的跨域场景 3.什么事同源策略 &#xff…

python + requests接口自动化测试详解

框架详细教程前段时间由于公司测试方向的转型&#xff0c;由原来的web页面功能测试转变成接口测试&#xff0c;之前大多都是手工进行&#xff0c;利用postman和jmeter进行的接口测试&#xff0c;后来&#xff0c;组内有人讲原先web自动化的测试框架移驾成接口的自动化框架&…

电子学会C/C++编程等级考试2023年05月(六级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:字符串插入 有两个字符串str和substr,str的字符个数不超过10,substr的字符个数为3。(字符个数不包括字符串结尾处的’\0’。)将substr插入到str中ASCII码最大的那个字符后面,若有多个最大则只考虑第一个。 时间限制:1000 …

分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09; 目录 分类预测 | Matlab实现KOA-CNN-LSTM-selfAttention多特征分类预测&#xff08;自注意力机制&#xff09;分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Mat…

Jmeter(十八):硬件性能监控指标详解

硬件性能监控指标 一、性能监控初步介绍 性能测试的主要目标 1.在当前的服务器配置情况&#xff0c;最大的用户数 2.平均响应时间ART&#xff0c;找出时间较长的业务 3.每秒事务数TPS&#xff0c;服务器的处理能力 性能测试涉及的内容 1.客户端性能测试&#xff1a;web前…

Xcode15 模拟器 Rosetta 模式

打开Xcode15的方式其实没有Rosetta 选项了&#xff0c;但是可以跑Xcode默认Rosetta 模拟器。在xcode中如下方式打开&#xff1a; Product -> Destination -> Destination Architectures -> 打开Show Rosetta Destinations 然后用这些带Rosetta的模拟器运行&#xff1…

嵌入式应用选择正确的系统设计方法:第一部分

现代嵌入式开发设计的功能规格丰富&#xff0c;并且必须在成本&#xff0c;性能等方面遵守多项其他要求&#xff0c;因此它们本质上是复杂的。因此&#xff0c;在设计大型系统时&#xff0c;我们需要方法和框架来帮助指导我们的决策。 在这个由三部分组成的系列的第一部分中&a…

2023年国赛如何运行脚本文件

1、设备脚本文件运行&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1xqLvO0k7LIJVLkzcL0KohQ?pwdwgzj 提取码&#xff1a;wgzj 二维码 2、linux虚拟机脚本文件运行 链接&#xff1a;https://pan.baidu.com/s/1vzRt01AT4u77ynel1KWCaw?pwdwgzj 提取码&#xff1…

马应龙-600993 三季报分析(20231030)

马应龙-600993 基本面分析 基本情况 公司名称&#xff1a;马应龙药业集团股份有限公司 A股简称&#xff1a;马应龙 成立日期&#xff1a;1994-05-09 上市日期&#xff1a;2004-05-17 所属行业&#xff1a;医药制造业 周期性&#xff1a;0 主营业务&#xff1a;主要从事中西药制…

正则表达式引擎比较(翻译自:A comparison of regex engines)

原文&#xff1a; A comparison of regex engines – Rust Leipzig 引言 正则表达式&#xff08;或简称regex&#xff09;通常用于模式搜索算法。 有许多不同的正则表达式引擎提供不同的表达式支持、性能约束和语言绑定。 基于 John Maddock 之前的工作 (regex comparison)和…

C++前缀和算法的应用:统计中位数为 K 的子数组

本文涉及的基础知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 题目 给你一个长度为 n 的数组 nums &#xff0c;该数组由从 1 到 n 的 不同 整数组成。另给你一个正整数 k 。 统计并返回 nums 中的 中位数 等于 k 的非空子数组的…