课题学习(九)----阅读《导向钻井工具姿态动态测量的自适应滤波方法》论文笔记

news2025/1/17 8:51:36

一、 引言

   引言直接从原论文复制,大概看一下论文的关键点:

垂直导向钻井工具在近钻头振动和工具旋转的钻井工作状态下,工具姿态参数的动态测量精度不高。为此,通过理论分析和数值仿真,提出了转速补偿的算法以消除工具旋转对测量的影响; 采用最小均方算法( Least Mean Square—LMS) 自适应滤波算法,可以有效滤除近钻头振动对测量的影响。数值仿真表明,经过转速补偿和LMS 自适应滤波后的井斜角测量误差可小于0. 1°,工具面角测量误差小于6°,有效地提高了垂直导向钻井工具的动态测量精度。

   关键点:转速补偿的算法以消除工具旋转对测量的影响;用最小均方算法( Least Mean Square—LMS) 自适应滤波算法,可以有效滤除近钻头振动对测量的影响。

二、 动态测量中的问题

2.1 旋转运动对姿态测量的影响

   在实际钻井过程中,设导向工具绕其回转中心以转速ω 旋转,则重力加速度计的工作状态如图1所示,图中R 为加速度计中心O’ 到工具回转中心O的距离。
在这里插入图片描述
   此时,X 轴 将会受到切向的附加惯性力作用,因此作用在X轴加速度计质量块的加速度 a x a_x ax不仅仅是重力加速度分量,还包括切向附加惯性力加速度。由加速度线性叠加原理得: a x = g x + α x = g s i n θ s i n φ + d ω d t R a_x=g_x+\alpha_x=gsin\theta sin\varphi +\frac{d\omega}{dt}R ax=gx+αx=gsinθsinφ+dtdωR
   其中, g x g_x gx为X 轴重力加速度分量,单位为 m / s 2 m/s^2 m/s2 ; α x \alpha_x αx为X 轴所受到的切向附加惯性力加速度,单位为 m / s 2 m/s^2 m/s2,它与转速ω 的变化率成正比例; θ 为井斜角、φ 为工具面角。
   Y 轴重力加速度计质量块也会因旋转而受到离心力作用,其加速度
a x = g x + α x = g s i n θ s i n φ + ω 2 R a_x=g_x+\alpha_x=gsin\theta sin\varphi +\omega^2R ax=gx+αx=gsinθsinφ+ω2R
   其中, g y g_y gy为Y 轴重力加速度分量,单位为 m / s 2 m/s^2 m/s2; α x \alpha_x αx为Y轴所受到的离心力加速度,单位为 m / s 2 m/s^2 m/s2,它与转速平方成正比。由上面两个公式可知,当工具转速较高时,安装在导向工具上的重力加速度计在井眼的不同方位上将产生差异较大的测量信号,从而导致工具姿态的较大测量误差

2.2 近钻头振动对姿态测量的影响

   在正常钻进过程中,钻头切削岩石会使钻柱产生横向和纵向振动,且横向振动尤为明显。近钻头振动信号有3 大特性:

①牙轮钻头牙齿吃入岩石形成高频特性;
②近钻头震源具有宽频性;
③钻头牙齿、牙轮与钻头整体复合运动具有随机性。

   近钻头振动信号的幅值一般在10g左右( g 为重力加速度, g = 0.9 m / s 2 g=0.9m/s^2 g=0.9m/s2 ) ,最大可达到30g。因此,近钻头的振动加速度一般远大于重力加速度,弱小的重力加速度信号将湮灭在振动加速度噪声中,导致工具姿态测量无效。根据近钻头横向振动信号特性,采用幅值为6 g 的随机白噪声来模拟近钻头高频随机振动信号,信号特征如下图所示。
在这里插入图片描述
   设仅考虑近钻头处的横向振动,其对X、Y 轴向分解后分别记为Ax、Ay,设 A x = K x g A_x=K_xg Ax=Kxg A y = K y g A_y=K_yg Ay=Kyg; K x 、 K y K_x、K_y KxKy为最大值为10 的随机系数。假设近钻头振动、旋转运动以及重力加速度对加速度计的影响线性可加,则X,Y 轴重力加速度计的测量信号为 V ^ x = V x + V r x + V p x = V g s i n θ s i n φ + V g R g d ω d t + K x V g \hat{V}_x=V_x+V_{rx}+V_{px}=V_gsin\theta sin\varphi +V_g\frac{R}{g}\frac{d\omega}{dt}+K_xV_g V^x=Vx+Vrx+Vpx=Vgsinθsinφ+VggRdtdω+KxVg
V ^ y = V y + V r y + V p y = V g s i n θ c o s φ + V g R g ω 2 + K y V g \hat{V}_y=V_y+V_{ry}+V_{py}=V_gsin\theta cos\varphi +V_g\frac{R}{g}\omega^2+K_yV_g V^y=Vy+Vry+Vpy=Vgsinθcosφ+VggRω2+KyVg
   其中: V x 、 V y V_x、V_y VxVy为加速度计的理想输出信号; V r x 、 V r y V_{rx}、V_{ry} VrxVry分别为X、Y 轴加速度计的旋转附加信号; V p x 、 V p y V_{px}、V_{py} VpxVpy为振动产生的附加信号。

三、导向工具姿态动态测量方法

3.1 工具旋转转速补偿算法

   考虑到工具旋转时的附加信号 V r x 、 V r y V_{rx}、V_{ry} VrxVry为转速ω的函数,因此,利用速率陀螺仪实时测出工具转速ω,则可进行误差校正。
   设由速率陀螺仪测得导向工具转速为 ω ^ \hat{\omega} ω^( 考虑速率陀螺仪的测量误差为5%) ,可计算得工具旋转附加信号估计值为 V ^ r x 、 V ^ r y \hat{V}_{rx}、\hat{V}_{ry} V^rxV^ry利用2.2节的公式进行校正: V ^ x 1 = V ^ x − V ^ r x = V x + V p x \hat{V}_{x1}=\hat{V}_{x}-\hat{V}_{rx}=V_x+V_{px} V^x1=V^xV^rx=Vx+Vpx
V ^ y 1 = V ^ y − V ^ r y = V y + V p y \hat{V}_{y1}=\hat{V}_{y}-\hat{V}_{ry}=V_y+V_{py} V^y1=V^yV^ry=Vy+Vpy

3.2 振动信号的自适应滤波

   近钻头振动信号是一种宽带噪声信号,自适应滤波器利用其自动调节参数的优势,无需知道输入信号和噪声统计特性,自动跟踪噪声源,将噪声滤除。自适应滤波的基本思想是: 将振动信号与滤波估计出的参考信号进行抵消操作
   自适应滤波器有两路输入:

一路为原始通道,其不仅接收加速度计测量信号 V x ( k ) V_x(k) Vx(k)( 将加速度传感器测量信号离散化) ,还接收和信号 V x ( k ) V_x(k) Vx(k)不相关的近钻头振动附加信号 V r p 0 ( k ) V_{rp0}(k) Vrp0(k)

另一路为参考输入通道,其接收与信号 V x ( k ) V_x(k) Vx(k)不相关且与振动信号 V r p 0 ( k ) V_{rp0}(k) Vrp0(k)相关的振动信号 V r p 1 V_{rp1} Vrp1

   自适应滤波器原理图结构如下所示:
在这里插入图片描述
   根据自适应滤波器的特性,振动信号 V r p 1 ( k ) V_{rp1}(k) Vrp1(k)经过LMS自适应滤波器自动调整输出后,得到 V r p 1 ( k ) V_{rp1}(k) Vrp1(k)的估计信号,即 y ( k ) = V ^ r p 1 ( k ) y(k)=\hat{V}_{rp1}(k) y(k)=V^rp1(k).
   则自适应滤波器系统输出的误差信号e( k) 等于原始信号和参考输入信号的差值,表示为: e ( k ) = V x ( k ) + V r p 0 ( k ) − V ^ r p 1 ( k ) e(k)=V_x(k)+V_{rp0}(k)-\hat{V}_{rp1}(k) e(k)=Vx(k)+Vrp0(k)V^rp1(k)
   对这个式子做一个变形: e ( k ) − V x ( k ) = V r p 0 ( k ) − V ^ r p 1 ( k ) e(k)-V_x(k)=V_{rp0}(k)-\hat{V}_{rp1}(k) e(k)Vx(k)=Vrp0(k)V^rp1(k)
   并且对上面的两边同时开平方并取均方误差: E [ e 2 ( k ) ] = E [ V x 2 ( k ) ] + E [ ( V r p 0 ( k ) − V r p 1 ( k ) ) 2 ] + 2 E [ V x ( K ) ( V r p ( k ) − V r p 1 ( k ) ) ] E[e^2(k)]=E[{V_x}^2(k)]+E[(V_{rp0}(k)-V_{rp1}(k))^2]+2E[V_x(K)(V_{rp}(k)-V_{rp1}(k))] E[e2(k)]=E[Vx2(k)]+E[(Vrp0(k)Vrp1(k))2]+2E[Vx(K)(Vrp(k)Vrp1(k))]
   E [ e 2 ( k ) ] E[e^2(k)] E[e2(k)]表示功率信号, V x ( k ) V_x(k) Vx(k) V r p 1 ( k ) V_{rp1}(k) Vrp1(k)无关,所以 2 E [ V x ( K ) ( V r p ( k ) − V r p 1 ( k ) ) ] = 0 2E[V_x(K)(V_{rp}(k)-V_{rp1}(k))]=0 2E[Vx(K)(Vrp(k)Vrp1(k))]=0,因此, 均方误差 E [ e 2 ( k ) ] E[e^2(k)] E[e2(k)] 最小, 等价于 E [ ( V r p 0 ( k ) − V r p 1 ( k ) ) 2 ] E[(V_{rp0}(k)-V_{rp1}(k))^2] E[(Vrp0(k)Vrp1(k))2]达到最小。
   LMS 自适应滤波过程是由其权向量迭代公式: W ( k + 1 ) = W ( k ) + 2 μ e ( k ) x ( k ) W(k+1)=W(k)+2\mu e(k)x(k) W(k+1)=W(k)+2μe(k)x(k)
   自身调节权值 W ( k ) W(k) W(k)使得 E [ e 2 ( k ) ] E[e^2(k)] E[e2(k)]达到最小。
   式中: μ \mu μ为调整搜索步长的正值常数,其收敛速度与系统稳定性有关; W ( k ) W(k) W(k)为系统第k 次迭代权系数; x ( k ) x(k) x(k)为输入信号。
   根据 e ( k ) − V x ( k ) = V r p 0 ( k ) − V ^ r p 1 ( k ) e(k)-V_x(k)=V_{rp0}(k)-\hat{V}_{rp1}(k) e(k)Vx(k)=Vrp0(k)V^rp1(k),所以在LMS 准则下, E [ ( V r p 0 ( k ) − V r p 1 ( k ) ) 2 ] E[(V_{rp0}(k)-V_{rp1}(k))^2] E[(Vrp0(k)Vrp1(k))2]被最小化的同时, E [ ( V r p 0 ( k ) − V r p 1 ( k ) ) 2 ] E[(V_{rp0}(k)-{V}_{rp1}(k))^2] E[(Vrp0(k)Vrp1(k))2]也被最小化了,即LMS 自适应滤波器的输出 y ( k ) y(k) y(k) V r p 1 ( k ) V_{rp1}(k) Vrp1(k)逼近等效于 e ( k ) e(k) e(k) V x ( k ) V_x(k) Vx(k) 逼近,从而系统输出的是加速度计信号 V x ( k ) V_x(k) Vx(k)的最佳估计。
  剩下的内容为效果仿真了,具体就不再看了,论文整体上思路很简单,也好理解,细心看一下就好,而且本篇论文实际稍微有点远,为2016的论文,有兴趣的可以从知网下载。

四、往期回顾

课题学习(一)----静态测量
课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)
课题学习(三)----倾角和方位角的动态测量方法(基于陀螺仪的测量系统)
课题学习(四)----四元数解法
课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》
课题学习(六)----安装误差校准、实验方法
课题学习(七)----粘滑运动的动态算法
课题学习(八)----卡尔曼滤波动态求解倾角、方位角

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1145729.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端 : 用html ,css,js写一个你画我猜的游戏

1.HTML&#xff1a; <body><div id "content"><div id "box1">计时器</div><div id"box"><div id "top"><div id "box-top-left">第几题:</div><div id "box…

ROS自学笔记十八:ModuleNotFoundError: No module named ‘serial‘

出现上述错误&#xff0c;则需要安装serial功能包 第一步&#xff1a;输入 sudo apt install python3-pip 第二步&#xff1a;输入 pip install pyserial

C++打怪升级(九)- STL之string

~~~~ 前言1. STL简单介绍1.1 什么是STL?1.2 STL的版本最初的版本P.J版本RW版本SGI版本 1.3 STL的六大组件1.4 STL的一些缺点1.5 STL重要吗&#xff1f; 2 编码2.1 ASCII编码2.2 Unicode编码UTF-8编码 2.3 GBK编码 3. 类模板basic_string4. 单字符string类4.1 什么是string4.2 …

LV.12 D12 GPIO实验 学习笔记

一、GPIO简介 GPIO&#xff08;General-purpose input/output&#xff09;即通用型输入输出&#xff0c;GPIO可以控制连接在其之上的引脚实现信号的输入和输出 芯片的引脚与外部设备相连&#xff0c;从而实现与外部硬件设备的通讯、控制及信号采集等功能 实验步骤 1. 通过…

C/C++晶晶赴约会 2020年12月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 C/C晶晶赴约会 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C晶晶赴约会 2020年12月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 晶晶的朋友贝贝约晶晶下周一起去看展览&#xff0…

x210项目重新回顾之十七升级到linux4.19.114 +buildroot2018再讨论

代码参考https://github.com/colourfate/x210_bsp/ 他的是linux_4.10(dtb为 s5pv210-x210..dtb)我打算用linux4.19.114(dtb为 s5pv210-smdkv210.dtb) &#xff0c;所以修改build.sh ------------------------------------------------------------------------------ 5 M…

Flutter笔记:完全基于Flutter绘图技术绘制一个精美的Dash图标(下)

Flutter笔记 完全基于Flutter绘图技术绘制一个精美的Dart吉祥物Dash 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/arti…

NewStarCTF2023week4-溯源

题目描述是冰蝎进行WebShell连接的流量包&#xff0c;我们需要找到攻击者获取到的服务器用户名和服务器内网IP地址。 先介绍一下常见webshell工具的流量特征&#xff1a; 1、中国菜刀 请求体中存在eval、base64等特征字符&#xff1b; 连接过程中使用base64编码对发送的指令…

QT5.15在Ubuntu22.04上编译流程

在我们日常遇到的很多第三方软件中&#xff0c;有部分软件针对开发人员&#xff0c;并不提供预编译成果物&#xff0c;而是需要开发人员自行编译&#xff0c;此类问题有时候不是问题&#xff08;编译步骤的doc详细且清晰时&#xff09;&#xff0c;但有时候又很棘手&#xff08…

项目管理之如何分解项目工作

在项目管理中&#xff0c;产品分解结构&#xff08;PBS&#xff09;是一种重要的工具&#xff0c;可以帮助团队更好地理解和组织项目中的产品。通过产品分解结构&#xff0c;团队可以将产品的需求、功能、规格等分解成不同的层次和组成部分&#xff0c;以便更好地进行任务分配、…

Android系统的特性

目录 Android系统的特性 1. 显示布局 2. 数据存储 3. 网络 4. 信息 5. 浏览器 6. 编程语言支持 7. 媒体支持 8. 流媒体支持 9. 硬件支持 10. 多点触控 11.蓝牙 12. 多任务处理 13. 语音功能 14.无线共享功能 15. 截图功能 16. 跨平台 17. 应用程序的安全机制…

RabbitMQ学习03

文章目录 工作队列1. 轮询分发消息2. 消息应答1.概念2.自动应答3.消息应答的方法4.Multiple 的解释5.消息自动重新入队6. 手动应答代码 3. RabbitMQ持久化1. 概念2. 队列如何实现持久化3. 消息实现持久化4. 不公平分发5. 预取值 工作队列 工作队列(又称任务队列)的主要思想是避…

No authorization token was found

今天遇到了一个问题&#xff0c;我把前后端逻辑都理了一遍&#xff0c;开始怀疑后端&#xff0c;后端肯定没错了&#xff0c;把前端理了一遍&#xff0c;ok前后端没错&#xff0c;我错。登录哪里需要的token&#xff1f;&#xff1f;&#xff1f;&#xff1f;把我搞懵逼了。 测…

苹果cms模板MXone V10.7魔改版源码 全开源

苹果cms模板MXone V10.7魔改版源码 全开源 苹果cms模板MXone魔改版短视大气海报样式 安装模板教程说明&#xff1a; 1、将模板压缩包上传到苹果CMS程序/template下解压 2、网站模板选择mxone 模板目录填写html 3、网站模板选择好之后一定要先访问前台&#xff0c;然后再进…

【数据结构与算法】二叉树基础OJ -- 上 (巩固提高)

前言&#xff1a; &#x1f4a5;&#x1f388;个人主页:​​​​​​Dream_Chaser&#xff5e; &#x1f388;&#x1f4a5; ✨✨刷题专栏:http://t.csdn.cn/UlvTc ⛳⛳本篇内容:力扣上二叉树OJ基础练习 ​​​​​​​ 目录 leetcode 965.单值二叉树 题目描述: 解题思路: …

pytorch笔记:TRIPLETMARGINLOSS

1 介绍 创建一个衡量三元组损失的标准&#xff0c;给定输入张量 x1​、x2​ 和 x3​ 以及一个大于0的间距值。这用于测量样本之间的相对相似性。一个三元组由a、p和n组成&#xff08;锚点、正例和负例&#xff09;。所有输入张量的形状都应为 (N,D) 2 基本使用方法 torch.nn.…

深度学习之基于YoloV8的行人跌倒目标检测系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、行人跌倒目标检测系统四. 总结 一项目简介 世界老龄化趋势日益严重&#xff0c;现代化的生活习惯又使得大多数老人独居&#xff0c;统计数据表…

前端 : 用HTML ,CSS ,JS 做一个点名器

1.HTML&#xff1a; <body><div id "content"><div id"top"><div id "name">XAiot2302班点名器</div></div><div id "center"><div id "word">你准备好了吗?</di…

IOC课程整理-7 Spring IoC 依赖来源

1 依赖查找的来源 2 依赖注入的来源 3 Spring容器管理和游离对象 4 Spring BeanDefinition 作为依赖来源 5 单例对象作为依赖来源 7 非 Spring 容器管理对象作为依赖来源 8 外部化配置作为依赖来源 面试题 1 注入和查找的依赖来源是否相同 &#xff1a;否&#xff0c;依赖查…

Ps:对象选择工具

对象选择工具 Object Selection Tool是 Photoshop 2020 版以后新增的选区工具&#xff0c;可用于自动选择图像中的对象或区域&#xff0c;如人物、汽车、宠物、天空、水、建筑物和山脉等。 快捷键&#xff1a;W 让对象选择工具自动检测并选择图像内的对象或区域&#xff0c;或者…