【Python】基于非侵入式负荷检测与分解的电力数据挖掘

news2024/11/25 1:00:28

文章目录

    • 前言
    • 一、案例背景
    • 二、分析目标
    • 三、分析过程
    • 四、数据准备
      • 4.1 数据探索
      • 4.2 缺失值处理
    • 五、属性构造
      • 5.1 设备数据
      • 5.2 周波数据
    • 六、模型训练
    • 七、性能度量
    • 文末送书:《Python数据挖掘:入门、进阶与实用案例分析》

前言

本案例将根据已收集到的电力数据,深度挖掘各电力设备的电流、电压和功率等情况,分析各电力设备的实际用电量,进而为电力公司制定电能能源策略提供一定的参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。

一、案例背景

为了更好地监测用电设备的能耗情况,电力分项计量技术随之诞生。电力分项计量对于电力公司准确预测电力负荷、科学制定电网调度方案、提高电力系统稳定性和可靠性有着重要意义。对用户而言,电力分项计量可以帮助用户了解用电设备的使用情况,提高用户的节能意识,促进科学合理用电。

在这里插入图片描述

二、分析目标

本案例根据非侵入式负荷检测与分解的电力数据挖掘的背景和业务需求,需要实现的目标如下。

  • 分析每个用电设备的运行属性。
  • 构建设备判别属性库。
  • 利用K最近邻模型,实现从整条线路中“分解”出每个用电设备的独立用电数据。

三、分析过程

详细的分析过程可以看下图所示,从数据来源到数据最后准备,最后到性能度量所有的过程。

在这里插入图片描述

四、数据准备

4.1 数据探索

在本案例的电力数据挖掘分析中,不会涉及操作记录数据。因此,此处主要获取设备数据、周波数据和谐波数据。在获取数据后,由于数据表较多,每个表的属性也较多,所以需要对数据进行数据探索分析。在数据探索过程中主要根据原始数据特点,对每个设备的不同属性对应的数据进行可视化,得到的部分结果如下图1~图3所示。

在这里插入图片描述
(图1 无功功率和总无功功率)

在这里插入图片描述
(图2 电流轨迹)

在这里插入图片描述
(图3 电压轨迹)

根据可视化结果可以看出,不同设备之间的电流、电压和功率属性各不相同。

对数据属性进行可视化如代码清单1所示。

import pandas as pd

import matplotlib.pyplot as plt

import os

 

filename = os.listdir('../data/附件1')  # 得到文件夹下的所有文件名称

n_filename = len(filename)  

# 给各设备的数据添加操作信息,画出各属性轨迹图并保存

def fun(a):

    save_name = ['YD1', 'YD10', 'YD11', 'YD2', 'YD3', 'YD4',

           'YD5', 'YD6', 'YD7', 'YD8', 'YD9']

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

    for i in range(a):

        Sb = pd.read_excel('../data/附件1/' + filename[i], '设备数据', index_col = None)

        Xb = pd.read_excel('../data/附件1/' + filename[i], '谐波数据', index_col = None)

        Zb = pd.read_excel('../data/附件1/' + filename[i], '周波数据', index_col = None)

        # 电流轨迹图

        plt.plot(Sb['IC'])

        plt.title(save_name[i] + '-IC')

        plt.ylabel('电流(0.001A)')

        plt.show()

        # 电压轨迹图

        lt.plot(Sb['UC'])

        plt.title(save_name[i] + '-UC')

        plt.ylabel('电压(0.1V)')

        plt.show()

        # 有功功率和总有功功率

        plt.plot(Sb[['PC', 'P']])

        plt.title(save_name[i] + '-P')

        plt.ylabel('有功功率(0.0001kW)')

        plt.show()

        # 无功功率和总无功功率

        plt.plot(Sb[['QC', 'Q']])

        plt.title(save_name[i] + '-Q')

        plt.ylabel('无功功率(0.0001kVar)')

        plt.show()

        # 功率因数和总功率因数

        plt.plot(Sb[['PFC', 'PF']])

        plt.title(save_name[i] + '-PF')

        plt.ylabel('功率因数(%)')

        plt.show()

        # 谐波电压

        plt.plot(Xb.loc[:, 'UC02':].T)

        plt.title(save_name[i] + '-谐波电压')

        plt.show()

        # 周波数据

        plt.plot(Zb.loc[:, 'IC001':].T)

        plt.title(save_name[i] + '-周波数据')

        plt.show()

fun(n_filename)

4.2 缺失值处理

通过数据探索,发现数据中部分time属性存在缺失值,需要对这部分缺失值进行处理。由于每份数据中time属性的缺失时间段长不同,所以需要进行不同的处理。对于每个设备数据中具有较大缺失时间段的数据进行删除处理,对于具有较小缺失时间段的数据使用前一个值进行插补。

在进行缺失值处理之前,需要将训练数据中所有设备数据中的设备数据表、周波数据表、谐波数据表和操作记录表,以及测试数据中所有设备数据中的设备数据表、周波数据表和谐波数据表都提取出来,作为独立的数据文件,生成的部分文件如图 4 所示。

在这里插入图片描述
(图4 提取数据文件部分结果)

提取数据文件如代码清单 2 所示。


# 将xlsx文件转化为CSV文件

import glob

import pandas as pd

import math

 

def file_transform(xls):

    print('共发现%s个xlsx文件' % len(glob.glob(xls)))

    print('正在处理............')

    for file in glob.glob(xls):  # 循环读取同文件夹下的xlsx文件

        combine1 = pd.read_excel(file, index_col=0, sheet_name=None)

        for key in combine1:

            combine1[key].to_csv('../tmp/' + file[8: -5] + key + '.csv', encoding='utf-8')

    print('处理完成')

 

xls_list = ['../data/附件1/*.xlsx', '../data/附件2/*.xlsx']

file_transform(xls_list[0])  # 处理训练数据

file_transform(xls_list[1])  # 处理测试数据

提取数据文件完成后,对提取的数据文件进行缺失值处理,处理后生成的部分文件如图 5 所示。

在这里插入图片描述
(图5 缺失值处理后的部分结果)

# 对每个数据文件中较大缺失时间点数据进行删除处理,较小缺失时间点数据进行前值替补

def missing_data(evi):

    print('共发现%s个CSV文件' % len(glob.glob(evi)))

    for j in glob.glob(evi):

        fr = pd.read_csv(j, header=0, encoding='gbk')

        fr['time'] = pd.to_datetime(fr['time'])

        helper = pd.DataFrame({'time': pd.date_range(fr['time'].min(), fr['time'].max(), freq='S')})

        fr = pd.merge(fr, helper, on='time', how='outer').sort_values('time')

        fr = fr.reset_index(drop=True)

 

        frame = pd.DataFrame()

        for g in range(0, len(list(fr['time'])) - 1):

            if math.isnan(fr.iloc[:, 1][g + 1]) and math.isnan(fr.iloc[:, 1][g]):

                continue

            else:

                scop = pd.Series(fr.loc[g])

                frame = pd.concat([frame, scop], axis=1)

        frame = pd.DataFrame(frame.values.T, index=frame.columns, columns=frame.index)

        frames = frame.fillna(method='ffill')

        frames.to_csv(j[:-4] + '1.csv', index=False, encoding='utf-8')

    print('处理完成')

 

evi_list = ['../tmp/附件1/*数据.csv', '../tmp/附件2/*数据.csv']

missing_data(evi_list[0])  # 处理训练数据

missing_data(evi_list[1])  # 处理测试数据

五、属性构造

虽然在数据准备过程中对属性进行了初步处理,但是引入的属性太多,而且这些属性之间存在重复的信息。为了保留重要的属性,建立精确、简单的模型,需要对原始属性进一步筛选与构造。

5.1 设备数据

在数据探索过程中发现,不同设备的无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数差别很大,具有较高的区分度,故本案例选择无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数作为设备数据的属性构建判别属性库。

处理好缺失值后,每个设备的数据都由一张表变为了多张表,所以需要将相同类型的数据表合并到一张表中,如将所有设备的设备数据表合并到一张表当中。同时,因为缺失值处理的其中一种方式是使用前一个值进行插补,所以产生了相同的记录,需要对重复出现的记录进行处理,处理后生成的数据表如表1所示。

在这里插入图片描述

合并且去重设备数据如代码清单4所示:

import glob
import pandas as pd
import os

# 合并11个设备数据及处理合并中重复的数据

def combined_equipment(csv_name):

    # 合并

    print('共发现%s个CSV文件' % len(glob.glob(csv_name)))
    print('正在处理............')

    for i in glob.glob(csv_name):  # 循环读取同文件夹下的CSV文件

        fr = open(i, 'rb').read()
        file_path = os.path.split(i)
        with open(file_path[0] + '/device_combine.csv', 'ab') as f:
            f.write(fr)

    print('合并完毕!')

    # 去重

    df = pd.read_csv(file_path[0] + '/device_combine.csv', header=None, encoding='utf-8')
    datalist = df.drop_duplicates()
    datalist.to_csv(file_path[0] + '/device_combine.csv', index=False, header=0)

    print('去重完成')

csv_list = ['../tmp/附件1/*设备数据1.csv', '../tmp/附件2/*设备数据1.csv']

combined_equipment(csv_list[0])  # 处理训练数据
combined_equipment(csv_list[1])  # 处理测试数据

5.2 周波数据

在数据探索过程中发现,周波数据中的电流随着时间的变化有较大的起伏,不同设备的周波数据中的电流绘制出来的折线图的起伏不尽相同,具有明显的差异,故本案例选择波峰和波谷作为周波数据的属性构建判别属性库。

由于原始的周波数据中并未存在电流的波峰和波谷两个属性,所以需要进行属性构建,构建生成的数据表如表2所示。

在这里插入图片描述

构建周波数据中的属性代码如代码清单 5 所示:

# 求取周波数据中电流的波峰和波谷作为属性参数

import glob
import pandas as pd
from sklearn.cluster import KMeans
import os

 

def cycle(cycle_file):

    for file in glob.glob(cycle_file):

        cycle_YD = pd.read_csv(file, header=0, encoding='utf-8')
        cycle_YD1 = cycle_YD.iloc[:, 0:128]
        models = []

        for types in range(0, len(cycle_YD1)):

            model = KMeans(n_clusters=2, random_state=10)
            model.fit(pd.DataFrame(cycle_YD1.iloc[types, 1:]))  # 除时间以外的所有列
            models.append(model)

 

        # 相同状态间平稳求均值

        mean = pd.DataFrame()
        for model in models:

            r = pd.DataFrame(model.cluster_centers_, )  # 找出聚类中心
            r = r.sort_values(axis=0, ascending=True, by=[0])
            mean = pd.concat([mean, r.reset_index(drop=True)], axis=1)

        mean = pd.DataFrame(mean.values.T, index=mean.columns, columns=mean.index)
        mean.columns = ['波谷', '波峰']
        mean.index = list(cycle_YD['time'])
        mean.to_csv(file[:-9] + '波谷波峰.csv', index=False, encoding='gbk ')

 

cycle_file = ['../tmp/附件1/*周波数据1.csv', '../tmp/附件2/*周波数据1.csv']
cycle(cycle_file[0])  # 处理训练数据
cycle(cycle_file[1])  # 处理测试数据

 

# 合并周波的波峰波谷文件

def merge_cycle(cycles_file):

    means = pd.DataFrame()

    for files in glob.glob(cycles_file):
        mean0 = pd.read_csv(files, header=0, encoding='gbk')
        means = pd.concat([means, mean0])

    file_path = os.path.split(glob.glob(cycles_file)[0])
    means.to_csv(file_path[0] + '/zuhe.csv', index=False, encoding='gbk')

    print('合并完成')

 
cycles_file = ['../tmp/附件1/*波谷波峰.csv', '../tmp/附件2/*波谷波峰.csv']

merge_cycle(cycles_file[0])  # 训练数据
merge_cycle(cycles_file[1])  # 测试数据

六、模型训练

在判别设备种类时,选择K最近邻模型进行判别,利用属性构建而成的属性库训练模型,然后利用训练好的模型对设备1和设备2进行判别。构建判别模型并对设备种类进行判别,如代码清单 6 所示。

import glob
import pandas as pd
from sklearn import neighbors
import pickle
import os

 

# 模型训练

def model(test_files, test_devices):

    # 训练集

    zuhe = pd.read_csv('../tmp/附件1/zuhe.csv', header=0, encoding='gbk')

    device_combine = pd.read_csv('../tmp/附件1/device_combine.csv', header=0, encoding='gbk')
    train = pd.concat([zuhe, device_combine], axis=1)
    train.index = train['time'].tolist()  # 把“time”列设为索引
    train = train.drop(['PC', 'QC', 'PFC', 'time'], axis=1)
    train.to_csv('../tmp/' + 'train.csv', index=False, encoding='gbk')

    # 测试集

    for test_file, test_device in zip(test_files, test_devices):
        test_bofeng = pd.read_csv(test_file, header=0, encoding='gbk')
        test_devi = pd.read_csv(test_device, header=0, encoding='gbk')
        test = pd.concat([test_bofeng, test_devi], axis=1)
        test.index = test['time'].tolist()  # 把“time”列设为索引
        test = test.drop(['PC', 'QC', 'PFC', 'time'], axis=1)

 

        # K最近邻

        clf = neighbors.KNeighborsClassifier(n_neighbors=6, algorithm='auto')
        clf.fit(train.drop(['label'], axis=1), train['label'])

        predicted = clf.predict(test.drop(['label'], axis=1))
        predicted = pd.DataFrame(predicted)
        file_path = os.path.split(test_file)[1]

        test.to_csv('../tmp/' + file_path[:3] + 'test.csv', encoding='gbk')
        predicted.to_csv('../tmp/' + file_path[:3] + 'predicted.csv', index=False, encoding='gbk')

        with open('../tmp/' + file_path[:3] + 'model.pkl', 'ab') as pickle_file:

            pickle.dump(clf, pickle_file)

        print(clf)

 

model(glob.glob('../tmp/附件2/*波谷波峰.csv'),

      glob.glob('../tmp/附件2/*设备数据1.csv'))

七、性能度量

根据代码清单 6 的设备判别结果,对模型进行模型评估,得到的结果如下,混淆矩阵如图 7 所示,ROC曲线如图 8 所示 。

模型分类准确度: 0.7951219512195122
模型评估报告:

               precision    recall  f1-score   support

         0.0       1.00      0.84      0.92        64

        21.0       0.00      0.00      0.00         0

        61.0       0.00      0.00      0.00         0

        91.0       0.78      0.84      0.81        77

        92.0       0.00      0.00      0.00         5

        93.0       0.76      0.75      0.75        59

       111.0       0.00      0.00      0.00         0

       accuracy                                0.80        205
     macro avg       0.36      0.35      0.35       205

weighted avg       0.82      0.80      0.81       205


计算auc:0.8682926829268293

混淆矩阵如下图所示:

在这里插入图片描述

ROC曲线如下图:

在这里插入图片描述

模型评估如代码清单7所示:

import glob
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from sklearn.preprocessing import label_binarize
import os
import pickle

 

# 模型评估

def model_evaluation(model_file, test_csv, predicted_csv):

    for clf, test, predicted in zip(model_file, test_csv, predicted_csv):
        with open(clf, 'rb') as pickle_file:
            clf = pickle.load(pickle_file)

        test = pd.read_csv(test, header=0, encoding='gbk')
        predicted = pd.read_csv(predicted, header=0, encoding='gbk')
        test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']
        print('模型分类准确度:', clf.score(test.drop(['label', 'time'], axis=1), test['label']))
        print('模型评估报告:\n', metrics.classification_report(test['label'], predicted))

 

        confusion_matrix0 = metrics.confusion_matrix(test['label'], predicted)
        confusion_matrix = pd.DataFrame(confusion_matrix0)
        class_names = list(set(test['label']))
 

        tick_marks = range(len(class_names))

        sns.heatmap(confusion_matrix, annot=True, cmap='YlGnBu', fmt='g')

        plt.xticks(tick_marks, class_names)
        plt.yticks(tick_marks, class_names)
        plt.tight_layout()

        plt.title('混淆矩阵')
        plt.ylabel('真实标签')
        plt.xlabel('预测标签')
        plt.show()

        y_binarize = label_binarize(test['label'], classes=class_names)
        predicted = label_binarize(predicted, classes=class_names)

 

        fpr, tpr, thresholds = metrics.roc_curve(y_binarize.ravel(), predicted.ravel())
        auc = metrics.auc(fpr, tpr)
        print('计算auc:', auc)  

        # 绘图

        plt.figure(figsize=(8, 4))

        lw = 2

        plt.plot(fpr, tpr, label='area = %0.2f' % auc)
        plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
        plt.fill_between(fpr, tpr, alpha=0.2, color='b')
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.05])
        plt.xlabel('1-特异性')
        plt.ylabel('灵敏度')
        plt.title('ROC曲线')
        plt.legend(loc='lower right')
        plt.show()


model_evaluation(glob.glob('../tmp/*model.pkl'),
                 glob.glob('../tmp/*test.csv'),
                 glob.glob('../tmp/*predicted.csv'))
               

根据分析目标,需要计算实时用电量。实时用电量计算的是瞬时的用电器的电流、电压和时间的乘积,公式如下。

在这里插入图片描述
其中,为实时用电量,单位是0.001kWh。为功率,单位为W

实时用电量计算,得到的实时用电量如表3所示。

在这里插入图片描述

计算实时用电量如代码清单8所示。

# 计算实时用电量并输出状态表

def cw(test_csv, predicted_csv, test_devices):

    for test, predicted, test_device in zip(test_csv, predicted_csv, test_devices):

        # 划分预测出的时刻表

        test = pd.read_csv(test, header=0, encoding='gbk')

        test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']

        test['time'] = pd.to_datetime(test['time'])

        test.index = test['time']

        predicteds = pd.read_csv(predicted, header=0, encoding='gbk')

        predicteds.columns = ['label']

        indexes = []

        class_names = list(set(test['label']))

        for j in class_names:

            index = list(predicteds.index[predicteds['label'] == j])

            indexes.append(index)

 

        # 取出首位序号及时间点

        from itertools import groupby  # 连续数字

        dif_indexs = []

        time_indexes = []

        info_lists = pd.DataFrame()

        for y, z in zip(indexes, class_names):

            dif_index = []

            fun = lambda x: x[1] - x[0]

            for k, g in groupby(enumerate(y), fun):

                dif_list = [j for i, j in g]  # 连续数字的列表

                if len(dif_list) > 1:

                    scop = min(dif_list)  # 选取连续数字范围中的第一个

                else:

                    scop = dif_list[0   ]

                dif_index.append(scop)

            time_index = list(test.iloc[dif_index, :].index)

            time_indexes.append(time_index)

            info_list = pd.DataFrame({'时间': time_index, 'model_设备状态': [z] * len(time_index)})

            dif_indexs.append(dif_index)

            info_lists = pd.concat([info_lists, info_list])

        # 计算实时用电量并保存状态表
        test_devi = pd.read_csv(test_device, header=0, encoding='gbk')
        test_devi['time'] = pd.to_datetime(test_devi['time'])
        test_devi['实时用电量'] = test_devi['P'] * 100 / 3600
        info_lists = info_lists.merge(test_devi[['time', '实时用电量']],

                                      how='inner', left_on='时间', right_on='time')

        info_lists = info_lists.sort_values(by=['时间'], ascending=True)
        info_lists = info_lists.drop(['time'], axis=1)
        file_path = os.path.split(test_device)[1]
        info_lists.to_csv('../tmp/' + file_path[:3] + '状态表.csv', index=False, encoding='gbk')

        print(info_lists)

 

cw(glob.glob('../tmp/*test.csv'),
   glob.glob('../tmp/*predicted.csv'),
   glob.glob('../tmp/附件2/*设备数据1.csv'))

文末送书:《Python数据挖掘:入门、进阶与实用案例分析》

今天博主推荐的是:Python数据挖掘书籍:《Python数据挖掘:入门、进阶与实用案例分析》

  • 参与方式:关注博主,评论区留言即可参与

  • 送出数量:暂定送出 2~3 本给粉丝

在这里插入图片描述

  • 京东官方购买链接:https://item.jd.com/13814157.html

《Python数据挖掘:入门、进阶与实用案例分析》是一本以项目实战案例为驱动的数据挖掘著作,它能帮助完全没有 Python 编程基础和数据挖掘基础的读者快速掌握 Python 数据挖掘的技术、流程与方法。在写作方式上,与传统的“理论与实践结合”的入门书不同,它以数据挖掘领域的知名赛事“泰迪杯”数据挖掘挑战赛(已举办10届)和“泰迪杯”数据分析技能赛(已举办5届)(累计1500余所高校的10余万师生参赛)为依托,精选了11个经典赛题,将Python编程知识、数据挖掘知识和行业知识三者融合,让读者在实践中快速掌握电商、教育、交通、传媒、电力、旅游、制造等7大行业的数据挖掘方法。

本书不仅适用于零基础的读者自学,还适用于教师教学,为了帮助读者更加高效地掌握本书的内容,本书提供了以下10项附加价值:

  1. 建模平台:提供一站式大数据挖掘建模平台,免配置,包含大量案例工程,边练边学,告别纸上谈兵
  2. 视频讲解:提供不少于600分钟Python编程和数据挖掘相关教学视频,边看边学,快速收获经验值
  3. 精选习题:精心挑选不少于60道数据挖掘练习题,并提供详细解答,边学边练,检查知识盲区
  4. 作者答疑:学习过程中有任何问题,通过“树洞”小程序,纸书拍照,一键发给作者,边问边学,事半功倍
  5. 数据文件:提供各个案例配套的数据文件,与工程实践结合,开箱即用,增强实操性
  6. 程序代码:提供书中代码的电子文件及相关工具的安装包,代码导入平台即可运行,学习效果立竿见影
  7. 教学课件:提供配套的PPT课件,使用本书作为教材的老师可以申请,节省备课时间
  8. 模型服务:提供不少于10个数据挖掘模型,模型提供完整的案例实现过程,助力提升数据挖掘实践能力
  9. 教学平台:泰迪科技为本书提供的附加资源提供一站式数据化教学平台,附有详细操作指南,边看边学边练,节省时间
  10. 就业推荐:提供大量就业推荐机会,与1500+企业合作,包含华为、京东、美的等知名企业

通过学习本书,读者可以理解数据挖掘的原理,迅速掌握大数据技术的相关操作,为后续数据分析、数据挖掘、深度学习的实践及竞赛打下良好的技术基础。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1135458.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Nodejs和Node-red的关系

NPM相关知识 npm概念 npm:Node Package Manager,Node包管理器。是Node.js默认的,以JavaScript编写的软件包管理系统。 npm工作原理 npm的操作原理是各个官网使用npm publish把代码提交到npm的服务器,其他人想要使用这些代码&am…

20 行为型模式-策略模式

1 策略模式概述 策略模式(strategy pattern)的原始定义是:定义一系列算法,将每一个算法封装起来,并使它们可以相互替换。策略模式让算法可以独立于使用它的客户端而变化。 2 策略模式原理 3 策略模式实现 策略模式的本质是通过Context类…

高数基础常用公式(持续更新)

1、求根公式 2、三角函数特殊度数对应值 3、三角函数常用公式

4个方法,提高excel表格制作效率

使用excell文件的时候总是会少不了要大批量的数据进行操作,今天分享4个快速使用excel操作的小技巧。希望能够帮大家提高excel制作效率。 技巧一:快速求和 当你想要分别得到行列的总和,我们可以选中表格数据以及总和的单元格,按住…

SAP-PP-查询报工数据

有两个报表可以查询报工数据,COOIS和COHV 两个程序大致差不多 都需要在清单里选择工序或者确认, 工序查询的是有效的报工,而确认查询到的是所有报工,包括冲销的报工, 当然也可以在底表中查询,底表包括&am…

迎重阳,话养老:平安养老险如何助力国民“养老梦”?

10月23日,我们将迎来传统节日重阳节,又称敬老节,自古就有祭祖、登高、赏菊三大风俗,流传至今,已成为人们孝老敬老的重要节日。 随着老龄化日益加深,在“敬老”的同时如何“备老”成为人民群众长期热议的话题…

储能PCS的负载测试需求

储能PCS测试应覆盖的最小和最大负载范围,以确保其在不同负载条件下的正常运行,测试时可以逐步增加负载,直到达到最大负载,然后逐步减小负载,直到达到最小负载。测试应涵盖不同类型的负载,例如恒定负载、脉冲…

对于构建自定义协议的思考(Java)

工作转眼也1年时间了,回顾历程,协议占了绝大多数 JSON(比较常见的通信文本了),protoBuf(小编有写过教程),自定义协议(字节拼接,在一些iot领域中的标准几乎都…

【Java网络原理】 四

本文主要介绍了TCP/IP五层协议中的应用层常见的数组组织格式和传输层UDP协议。 一.应用层 1.网络通信数据的实质 网络上传输的数据,本质就是字符串(准确的说,是二进制的字符串) Java中的各种对象,是无法直接传输的 &…

共享WiFi贴项目地推技巧,轻松学会推广!

共享WiFi贴代理是一种热门的赚钱方式,通过推广共享WiFi贴来获取收益。但要想在竞争激烈的市场中脱颖而出并赚到钱,并不是一件容易的事情。在本文中,我们将介绍一些推广及赚钱的方法。 选择合适的位置是推广共享WiFi贴的关键。你需要选择人流量…

SpringAOP源码解析之advice执行顺序(三)

上一章我们分析了Aspect中advice的排序为Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class,然后advice真正的执行顺序是什么?多个Aspect之间的执行顺序又是什么?就是我们本章探讨的问题。 准备工作 既…

QML(26)——多层qml界面传递信号

目录 使用场景传统方式高效方式代码效果展示 使用场景 界面嵌套关系如下 #mermaid-svg-Pt8AQGPjE5lV7nJh {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Pt8AQGPjE5lV7nJh .error-icon{fill:#552222;}#mermaid-svg…

2016年亚太杯APMCM数学建模大赛C题影视评价与定制求解全过程文档及程序

2016年亚太杯APMCM数学建模大赛 C题 影视评价与定制 原题再现 中华人民共和国成立以来,特别是政治改革和经济开放后,随着国家经济的增长、科技的发展和人民生活水平的提高,中国广播电视媒体取得了显著的成就,并得到了迅速的发展…

如何通过在线培训考试系统进行远程教育

随着互联网技术的不断发展,远程教育正在成为一种新型的学习方式,它使学生能够在任何地点、任何时间通过在线培训考试系统接受教育。 利用在线培训考试系统进行远程教育具有很大的灵活性。学生可以根据自己的时间和需求自由选择课程,无需受制…

MySQL进阶(日志)——MySQL的日志 bin log (归档日志) 事务日志redo log(重做日志) undo log(回滚日志)

前言 MySQL最为最流行的开源数据库,其重要性不言而喻,也是大多数程序员接触的第一款数据库,深入认识和理解MySQL也比较重要。 本篇博客阐述MySQL的日志,介绍重要的bin log (归档日志) 、 事务日志redo log(重做日志) 、 undo lo…

C语言系统化精讲(四):C语言变量和数据类型-下篇

文章目录 一、C语言中的小数1.1 小数的输出1.2 小数的后缀1.3 小数和整数相互赋值 二、在C语言中使用英文字符2.1 字符的表示2.2 字符的输出2.3 字符与整数2.4 C语言转义字符 四、C语言布尔类型(_BOOL)五、补充:C语言中的几个重要概念5.1 标识…

损失函数总结(六):KLDivLoss、BCEWithLogitsLoss

损失函数总结(六):KLDivLoss、BCEWithLogitsLoss 1 引言2 损失函数2.1 KLDivLoss2.2 BCEWithLogitsLoss 3 总结 1 引言 在前面的文章中已经介绍了介绍了一系列损失函数 (L1Loss、MSELoss、BCELoss、CrossEntropyLoss、NLLLoss、CTCLoss、Poi…

【mysql】实现设置表中所有数据的update_time,要求每1000条设置在一天

实现效果示例 执行SQL:(mysql 版本查看: select VERSION() :5.7.36-log) 实现效果: 这里最后一个id 9 > 总条数 6,所以没有更新到,直接手动补下就行 SELECT * FROM my_test S…

Capture One 23 Enterprise 16.3.0.76

Capture One 23 Enterprise是一款图像处理软件,旨在为企业用户提供高效、快速和灵活的工作流程。以下是该软件的主要特点和功能: 强大的图像编辑工具:Capture One 23 Enterprise提供了一系列强大的图像编辑工具,包括色彩校正、曲…

为什么自动驾驶需要5G?

什么叫自动驾驶? 自动驾驶分为6个等级: Level 0:人工驾驶,无驾驶辅助系统,仅提醒。 Level 1:辅助人工驾驶,可实现单一的车速或转向控制自动化,仍由人工驾驶(如定速巡航…