排序(上):为什么插入排序比冒泡排序更受欢迎?

news2025/1/12 23:14:06

排序对于任何一个程序员来说,可能都不会陌生。你学的第一个算法,可能就是排序。大部分编程语言中,也都提供了排序函数。在平常的项目中,我们也经常会用到排序。排序非常重要,所以我会花多一点时间来详细讲一讲经典的排序算法。
排序算法太多了,有很多可能你连名字都没听说过,比如猴子排序、睡眠排序、面条排序等。我只讲众多排序算法中的一小撮,也是最经典的、最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。我按照时间复杂度把它们分成了三类,分三节课来讲解。
在这里插入图片描述
带着问题去学习,是最有效的学习方法。所以按照惯例,我还是先给你出一个思考题:插入排序和冒泡排序的时间复杂度相同,都是O(n2),在实际的软件开发里,为什么我们更倾向于使用插入排序算法而不是冒泡排序算法呢?
你可以先思考一两分钟,带着这个问题,我们开始今天的内容!

如何分析一个“排序算法”?

学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。那分析一个排序算法,要从哪几个方面入手呢?

排序算法的执行效率

对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:
1.最好情况、最坏情况、平均情况时间复杂度
我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。
为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。
2.时间复杂度的系数、常数 、低阶
我们知道,时间复杂度反映的是数据规模n很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是10个、100个、1000个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
3.比较次数和交换(或移动)次数
这一节和下一节讲的都是基于比较的排序算法。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

排序算法的内存消耗

我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是O(1)的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

排序算法的稳定性

仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。
我通过一个例子来解释一下。比如我们有一组数据2,9,3,4,8,3,按照大小排序之后就是2,3,3,4,8,9。
这组数据里有两个3。经过某种排序算法排序之后,如果两个3的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法。
你可能要问了,两个3哪个在前,哪个在后有什么关系啊,稳不稳定又有什么关系呢?为什么要考察排序算法的稳定性呢?
很多数据结构和算法课程,在讲排序的时候,都是用整数来举例,但在真正软件开发中,我们要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个key来排序。
比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果我们现在有10万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?
最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。
借助稳定排序算法,这个问题可以非常简洁地解决。解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?
稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1134561.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Pytorch使用torchvision.datasets.ImageFolder读取数据集,数据集的内容排列状况

当使用torchvision.datasets.ImageFolder读取猫狗数据集时,dataset中存的图片是 猫狗猫狗猫狗猫狗 还是 猫猫猫猫狗狗狗狗 呢? 数据集文件的存放路径如下图 测试代码如下 import torch import torchvisiontransform torchvision.transforms.Compose([torchvision.transform…

Python【修饰器/装饰器】

Python【修饰器/装饰器】 修饰器(装饰器)在Python中也是一个很重要的内容,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,相当于一个语法糖,可能在新手看来,这是一个难以理解或者不知道有啥…

FPGA/SoC控制机械臂

FPGA/SoC控制机械臂 机器人技术处于工业 4.0、人工智能和边缘革命的前沿。让我们看看如何创建 FPGA 控制的机器人手臂。 介绍 机器人技术与人工智能和机器学习一起处于工业 4.0 和边缘革命的最前沿。 因此,我认为创建一个基础机器人手臂项目会很有趣,我们…

系统架构设计师之使用McCabe方法可以计算程序流程图的环形复杂度

系统架构设计师之使用McCabe方法可以计算程序流程图的环形复杂度

Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二)

这是继上一篇文章 “Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)” 的续篇。在这篇文章中,我主要来讲述 ElasticVectorSearch 的使用。 我们的设置和之前的那篇文章是一样的&#xff…

【C++基础入门】43.C++中多态的概念和意义

一、函数重写回顾 父类中被重写的函数依然会继承给子类子类中重写的函数将覆盖父类中的函数通过作用域分辨符(::)可以访问到父类中的函数 二、多态的概念和意义 面向对象中期望的行为 根据实际的对象类型判断如何调用重写函数父类指针(引用…

【蓝桥杯】蓝桥杯双周赛第二场ABCD题

A题:新生 知识点:下一届是第几届蓝桥杯…… 新一届蓝桥杯大赛即将在2024年拉开序! 作为大一新生的小蓝,在听说了这场盛大的比赛后,对其充满了期待与热情。但作为初次参赛的新手,他对蓝桥杯的相关赛制和历史并…

LVS负载均衡(LVS简介、三种工作模式、十种调度算法)

LVS简介 LVS(Linux Virtual Server)是一种基于Linux内核的高可用性负载均衡软件。它通过将客户端请求分发到多个后端真实服务器,提高系统性能和可靠性。LVS支持多种调度算法,如轮询、最少连接、源地址哈希等,用于决定…

番外8.2---配置/管理硬盘

""" Step1:清楚磁盘、硬盘(HDD)、光驱的概念及是否具有包含关系。 Step2:硬件设备(IDE、SCSI、SATA、NVMe、软驱等)命名方式及在linux系统里对应的文件名称。 Step3:&#xff1…

保存 uboot图像配置

一. 简介 本文学习如何保存经过图像配置,与加载 自己的配置文件。 之前几篇文章学习了:uboot 经过图形化配置 dns 命令功能。地址如下: uboot通过图像化界面配置 dns命令-CSDN博客 uboot通过图像化界面配置 dns命令验证-CSDN博客 二. 保…

微信管理系统的便捷功能:自动回复

宝子们 你有遇到以下头疼的问题吗? 1、每日手动一遍又一遍点“添加”来通过大量好友? 2、每日总要花至少半个或1个小时来回复刚通过的好友? 3、经常切换聊天窗口复制粘贴同样的内容回复客户? 4、一键转发操作多了被系统提示过于频繁? 5、…

虹科 | 解决方案 | 汽车示波器 学校教学方案

虹科Pico汽车示波器是基于PC的设备,特别适用于大课堂的教学、备课以及与师生的互动交流。老师展现讲解波形数据,让学生直观形象地理解汽车的工作原理 高效备课 课前实测,采集波形数据,轻松截图与标注,制作优美的课件&…

Ubuntu22.04 交叉编译阿里oss c-sdk

一、交叉编译openssl Ubuntu20.04 交叉编译openssl 1.0.1f_编译前去除 makefile 中所有的"-m64"字段_qq76211822的博客-CSDN博客文章浏览阅读319次。Ubuntu20.04 交叉编译openssl_编译前去除 makefile 中所有的"-m64"字段https://blog.csdn.net/sz7621182…

windows下使用FFmpeg开源库进行视频编解码完整步聚

最终解码效果: 1.UI设计 2.在控件属性窗口中输入默认值 3.复制已编译FFmpeg库到工程同级目录下 4.在工程引用FFmpeg库及头文件 5.链接指定FFmpeg库 6.使用FFmpeg库 引用头文件 extern "C" { #include "libswscale/swscale.h" #include "libavdevic…

Spring关于注解的使用

目录 一、使用注解开发的前提 1.1 配置注解扫描路径 二、使用注解创建对象 2.1 Controller(控制器储存) 2.2 Service(服务储存) 2.3 Repository(仓库储存) 2.4 Component(组件储存) …

自研框架跻身全球 JS 框架榜单,排名紧随 React、Angular 之后!

前言 终于实现了一个重要目标!我独立研发的 JavaScript 框架 Strve,最近发布了重大版本 6.0.2。距离上次大版本发布已经接近两个月,期间进行了大量的优化,使得框架性能和稳定性都得到了大幅度的提升。在上次的大版本更新中&#…

DevOps持续集成-Jenkins(2)

文章目录 DevOpsDevOps概述Integrate工具(centos7-jenkins主机)Integrate概述Jenkins介绍CI/CD介绍Linux下安装最新版本的Jenkins⭐Jenkins入门配置安装必备插件⭐安装插件(方式一:可能有时会下载失败)安装插件&#x…

负载均衡--Haproxy

haproxy 他也是常用的负载均衡软件 nginx 支持四层转发,七层转发 haproxy也可以四层和七层转发 haproxy:法国人开发的威利塔罗在2000年基于C语言开发的一个开源软件 可以支持一万以上的并发请求 高性能的tcp和http负载均衡2.4 1.5.9 haproxy&#…

微服务-Eureka

文章目录 提供者与消费者Eureka注册中心搭建EurekaServer服务注册服务发现项目结构 提供者与消费者 Eureka注册中心 服务消费者该如何获取服务提供者的地址信息? 服务提供者启动时向eureka注册自己的信息 eureka保存这些信息 消费者根据服务名称向eureka拉取提供者信…

10.Z-Stack协议栈移植

一、下载Z-Stack协议栈源文件 安装过程全部默认下一步即可,安装完成后会在C盘根目录下生成一个【Texas Instruments】文件夹 二、删除一些不必要的文件 将【ZStack-CC2530-2.3.0-1.4.0】文件夹,复制到自己放置ZigBee工程的文件夹下进入到【ZStack-CC253…