基于樽海鞘群算法的无人机航迹规划-附代码

news2024/10/2 14:29:25

基于樽海鞘群算法的无人机航迹规划

文章目录

  • 基于樽海鞘群算法的无人机航迹规划
    • 1.樽海鞘群搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用樽海鞘群算法来优化无人机航迹规划。

1.樽海鞘群搜索算法

樽海鞘群算法原理请参考:https://blog.csdn.net/u011835903/article/details/107767869

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得樽海鞘群搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用樽海鞘群算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,樽海鞘群算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1128729.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文讲清楚检索增强生成(RAG)

文章目录 什么是检索增强生成?逆向工作:为大语言模型提供额外的知识来回答问题通过系统提示给出LLM自定义指令为LLM提供特定的知识来源将所有内容放在一起并提出问题检索步骤:从您的知识库中获取正确的信息什么是嵌入?它们与知识检…

【第四天]C++高级类和对象:运算符重载、string类和智能指针的深度解析

一、运算符重载 运算符重载 是对已有的运算符 指定新功能,不能创建新运算符。 运算符重载关键字operator 语法:operator (表示被重载的运算符) 思路: 1、弄懂 函数的参数中参数个数取决于运算符是一元还是二元…

如何高效地给视频批量添加logo水印?

如果你想给大量的视频添加图片水印,那么固乔剪辑助手软件是一个非常不错的选择。通过这个软件,你可以轻松地批量添加图片水印,提高视频的质量和识别度。以下是如何使用固乔剪辑助手软件给视频批量添加图片水印的步骤: 步骤1&#…

Qt+树莓派4B 窗口半透明效果实现

文章目录 前言一、窗口半透明,窗口部件不透明1、构造函数中的设置2、paintEvent3、效果4、树莓派4B配置5、最终效果 前言 在树莓派4B下,使用Qt开发窗口半透明而窗口部件不透明效果时,发现窗口没能正常实现半透明效果,而是显示纯黑色背景。同样的代码在wi…

PLC 学习day03 PLC软件安装 PLC软件的介绍和对应的知识

1.资料来源 链接:7.PLC编程学习入门视频教程全集-三菱GX-Works2编程软件安装_哔哩哔哩_bilibili 链接:8.三菱plc视频教程全集之编程语言及软元件介绍_哔哩哔哩_bilibili 2. PLC软件的安装 三菱的PLC软件安装视屏的链接: 7.PLC编程学习入门视频…

Gymnasium的基本用法

目录 1.初始化环境 2.与环境交互 3.动作和观测空间 4.修改环境 Gymnasium是一个为所有单智能体强化学习环境提供API的项目,包括常见环境的实现:cartpole、pendulum、mountain-car、mujoco、atari等。 该API包含四个关键功能:make、reset、step和render&#xf…

对称加密操作

#常用密码技术 ##1 密码 1.1 发送者、接收者和窃听者 请想象一个Alice向Bob发送电子邮件的场景。在这个场景中,发出邮件的Alice称为 发送者(sender),而收到邮件的Bob则称为 接收者(receiver)。 在讲解发送…

公司只有功能测试,如何进一步提升自己?

一定要帮助想上进却又迷茫的人。 最近也听到一些做功能测试的同学的交流,天天做手工测试,想提升一下自己又不知道如何提升?其实还是在于这些同学对自己没有一个清晰的定位,没有明确的目标。做为功能测试人员来讲,从发…

【OpenVINO】基于 OpenVINO Python API 部署 RT-DETR 模型

基于 OpenVINO Python API 部署 RT-DETR 模型 1. RT-DETR2. OpenVINO3. 环境配置3.1 模型下载环境3.2 模型部署环境 4. 模型下载与转换4.1 PaddlePaddle模型下载4.2 IR模型转换 5. Python代码实现5.1 模型推理流程实现 6. 预测结果展示7. 总结 RT-DETR是在DETR模型基础上进行改…

JS中面向对象的程序设计

面向对象(Object-Oriented,OO)的语言有一个标志,那就是它们都有类的概念,而通过类可以创建任意多个具有相同属性和方法的对象。但在ECMAScript 中没有类的概念,因此它的对象也与基于类的语言中的对象有所不…

异常数据检测 | Python基于奇异谱分析时间序列插补预测

文章概述 在时间序列分析中,「奇异谱分析」(「SSA」)是一种非参数谱估计方法。它结合了经典时间序列分析、多元统计、多元几何、动力系统和信号处理的元素。 “奇异谱分析”这个名称涉及协方差矩阵的奇异值分解中的特征值谱,而不是直接涉及频域分解。 SSA 可以帮助分解时…

基于多元宇宙算法的无人机航迹规划-附代码

基于多元宇宙算法的无人机航迹规划 文章目录 基于多元宇宙算法的无人机航迹规划1.多元宇宙搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用多元宇宙算法来优化无人机航迹规划。 …

宝诗单证使用手册,并使用抽象和反射做通用抽象类,节省开发成本

单证示例 1024最适合写blog了,别说了,别说了,建议变成法定节假日。 宝诗单证的官网:宝诗官网 (宝诗团队记得给我打广告费) 宝诗单证的使用步骤 使用 抽象类 将获取字段的步骤抽象出来,极大的省略了代码量。节省开发…

苏州德创机器视觉工程师工作怎么样?

每一家公司都有自身特点,同时也每一家都有自身的bug。 苏州德创作为美国康耐视Cognex产品在华东最大的代理商,也是康耐视外包团队。那么苏州德创有哪些业务构成,业务的构成也是其招聘的主要人员的方向。 设备视觉供应商,如卓越&…

【Linux进阶之路】进程(中)—— 进程地址空间

文章目录 一、 进程地址空间1.概念引入2.基本概念3.深入概念3.1 初识信息交互3.2 区域划分3.3 进程地址空间3.4 再识页表缺页中断进程挂起 总结 一、 进程地址空间 1.概念引入 指针指向的地址是内存中的地址吗?下面我们用一个实验来证明一下。 先来写程序看一下程…

2010-2021年北大中国商业银行数字化转型指数数据(第三期)

2010-2021年北大中国商业银行数字化转型指数数据(第三期) 1、时间:2010-2021年 2、指标:银行名称、银行类型、年份、战略数字化、业务数字化、管理数字化、数字化总指数 3、来源:北大数字金融研究中心 4、数据说明…

中文大语言和多模态模型测评

Notion – The all-in-one workspace for your notes, tasks, wikis, and databases.A new tool that blends your everyday work apps into one. Its the all-in-one workspace for you and your teamhttps://yaofu.notion.site/C-Eval-6b79edd91b454e3d8ea41c59ea2af873排行榜…

Appium移动端自动测试框架,如何入门?

Appium是一个开源跨平台移动应用自动化测试框架。 既然只是想学习下Appium如何入门,那么我们就直奔主题。文章结构如下: 1、为什么要使用Appium? 2、如何搭建Appium工具环境?(超详细) 3、通过demo演示Appium的使用 4、Appium如何…

【Unity程序技巧】异步保险箱管理器

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…

Servlet的两种部署方法

Servlet是实现动态页面的技术,是tomcat给Java提供的原生的进行web开发的api 第一个Servlet程序 写一个servlet程序,部署到tomcat上,通过浏览器访问,得到hello world字符串 1.创建项目 此处要创建的是maven项目 maven&#xf…