OTA: Optimal Transport Assignment for Object Detection 论文和代码学习

news2024/11/19 6:11:57

OTA

  • 原因
  • 步骤
    • 什么是最优传输策略
    • 标签分配的OT
      • 正标签分配
      • 负标签分配
      • 损失计算
      • 中心点距离保持稳定
      • 动态k的选取
  • 整体流程
  • 代码
  • 使用

论文连接:

原因

1、全部按照一个策略如IOU来分配GT和Anchors不能得到全局最优,可能只能得到局部最优。
2、目前提出的ATSS和PAA等,这些方法探索了单个对象的最佳分配策略,而未能从全局的角度考虑上下文信息。
3、目前从全局角度考虑分配信息的DeTR,采用的是匈牙利匹配算法,可以达到 one to one 的最优匹配,但是不能达到 one to many 的最优匹配。(one to many 目前来看可以加速网络训练,使得网络收敛更快)。

步骤

什么是最优传输策略

最优运输(OT)描述了以下问题:
  假设某个地区有 m m m个供给者和 n n n个需求者。第 i i i个供应商持有 s i s_i si个单位的货物,而第 j j j个需求者需要 d j d_j dj个单位的货物。从供应商 i i i到需求商 j j j的每单位货物的运输成本由 c i j c_{ij} cij表示。
–> 我们想要找到一个运输方法,根据该方法,可以以最小的运输成本将来自供应商的所有货物运输到需求方:
min ⁡ π ∑ i = 1 m ∑ j = 1 n c i j π i j .  s.t.  ∑ i = 1 m π i j = d j , ∑ j = 1 n π i j = s i , ∑ i = 1 m s i = ∑ j = 1 n d j , π i j ≥ 0 , i = 1 , 2 , … m , j = 1 , 2 , … n . \begin{aligned} \min _{\pi} & \sum_{i = 1}^{m} \sum_{j = 1}^{n} c_{i j} \pi_{i j} . \\ \text { s.t. } & \sum_{i = 1}^{m} \pi_{i j} = d_{j}, \quad \sum_{j = 1}^{n} \pi_{i j} = s_{i}, \\ & \sum_{i = 1}^{m} s_{i} = \sum_{j = 1}^{n} d_{j}, \\ & \pi_{i j} \geq 0, \quad i = 1,2, \ldots m, j = 1,2, \ldots n . \end{aligned} πmin s.t. i=1mj=1ncijπij.i=1mπij=dj,j=1nπij=si,i=1msi=j=1ndj,πij0,i=1,2,m,j=1,2,n.
这是一个可以在多项式时间内求解的线性规划。然而,在我们的情况下,所得到的线性规划是大的,涉及到所有尺度的锚的特征尺寸的平方。因此,我们通过一个名为Sinkhorn-Knopp的快速迭代解来解决这个问题。

标签分配的OT

正标签分配

  在对象检测的上下文中,假设输入图像 I I I m m m个gt真实框和 n n n个锚(跨越所有FPN层),我们将每个gt视为拥有 k k k个正标签单位(即 s i = k , i = 1 , 2 , . . . , m s_i=k,i=1,2,...,m si=ki=12...m)的供应商,而每个锚作为需要一个单位标签(即 d j = 1 , j = 1 , 2 , . . . , n d_j=1,j=1,2,...,n dj=1j=12...n)的需求者。将一单位真实标签从 g t i gt_i gti运输到锚 a j a_j aj的成本 c f g c^{fg} cfg定义为其 c l s cls cls(类别损失)和 r e g reg reg(位置损失)的加权总和:
c i j f g = L c l s ( P j c l s ( θ ) , G i c l s ) + α L r e g ( P j b o x ( θ ) , G i b o x ) c_{i j}^{f g} = L_{c l s}\left(P_{j}^{c l s}(\theta), G_{i}^{c l s}\right)+ \\ \alpha L_{r e g}\left(P_{j}^{b o x}(\theta), G_{i}^{b o x}\right) cijfg=Lcls(Pjcls(θ),Gicls)+αLreg(Pjbox(θ),Gibox)

其中 θ θ θ为模型参数。 P j c l s P^{cls}_j Pjcls P j b o x P^{box}_j Pjbox表示预测的 c l s cls cls分数和 a j a_j aj的边界框。 G i c l s G^{cls}_i Gicls G i b o x G^{box}_i Gibox表示用于 g t i gt_i gti的真实类和边界框。 L c l s L_{cls} Lcls L r e g L_{reg} Lreg代表交叉熵损失和IoU损失。也可以用Focal Loss 和GIoU / SmoothL1 Loss 来代替这两种损失。 α α α为平衡系数。

负标签分配

  排除正分配之外,在训练期间会将大量锚点视为负样本。由于最佳运输涉及所有锚点,我们引入另一个供应商-背景,谁只提供负面标签。在一个标准的OT问题中,总供给必须等于总需求。因此,我们将背景可以提供的负标签的数量设置为 n − m × k n−m × k nm×k。将一个单位的负标签从后台运输到 a j a_j aj的成本定义为:
c j b g = L c l s ( P j c l s ( θ ) , ∅ ) , c_j^{bg}=L_{cls}(P_j^{cls}(\theta),\varnothing), cjbg=Lcls(Pjcls(θ),),
其中 ∅ \varnothing 表示背景类。将此 c b g ∈ R 1 × n c^{bg} ∈ R^{1×n} cbgR1×n c f g ∈ R m × n c^{fg} ∈ R^{m×n} cfgRm×n的最后一行连接起来,我们可以得到成本矩阵 c ∈ R ( m + 1 ) × n c ∈ R^{(m+1)×n} cR(m+1)×n的完全形式。供应向量s应相应地更新为:
s i = { k , i f i ≤ m n − m × k , i f i = m + 1. s_i=\begin{cases}k,&if\quad i\le m\\n-m\times k,&if\quad i=m+1.\end{cases} si={k,nm×k,ifimifi=m+1.

损失计算

  由于我们已经有了成本矩阵 c c c,供应向量 s ∈ R m + 1 s ∈ R^{m+1} sRm+1,需求向量 d ∈ R n d ∈ R^n dRn,因此可以通过现成的 S i n k h o r n − K n o p p 迭代 Sinkhorn-Knopp迭代 SinkhornKnopp迭代来解决这个OT问题,从而获得最优运输计划 π ∗ ∈ R ( m + 1 ) × n π^* ∈ R^{(m+1)×n} πR(m+1)×n。在得到 π ∗ π^* π之后,可以通过将每个锚分配给向其运输最大量的标签的供应商来解码对应的标签分配解决方案。随后的处理(例如,基于分配结果计算损耗,反向传播)与 FCOS 和 ATSS 中完全相同。注意到 OT 问题的优化过程只包含一些可以通过GPU设备加速的矩阵乘法,因此OTA只增加了不到20%的总训练时间,并且在测试阶段完全免费。

中心点距离保持稳定

  仅从具有有限区域的对象的中心区域选择正锚点,称为中心优先级。中心优先会在后续过程中存在 1、遭受大量模糊的锚点 2、或不良的统计数据。
  OTA不是依赖于统计特征,而是基于全局优化方法,因此自然可以抵抗这两个问题。理论上,OTA可以将gts框区域内的任何锚指定为正样本。然而,对于像COCO这样的一般检测数据集,我们发现中心先验仍然有利于OTA的训练。强制检测器聚焦于潜在的积极区域(即,中心区域)可以帮助稳定训练过程,特别是在训练的早期阶段,这将导致更好的最终表现。因此,我们对成本矩阵施加中心优先级。对于每个gt,我们根据锚点和gts之间的中心距离从每个FPN层上选择 r 2 r^2 r2个最近的锚点。对于不在 r 2 r^2 r2最接近列表中的锚点,它们在成本矩阵c中的对应条目将附加恒定成本,以降低它们在训练阶段期间被分配为正样本的可能性。节中4,我们将证明,虽然OTA像其他作品[38,47,48]一样采用一定程度的中心先验,但当r设置为大值时(即,大量潜在的正锚点以及更模糊的锚点)。

动态k的选取

  直观上,每个 gt 的正锚点的适当数量(即 s i s_i si)应该不同,并且基于许多因素,如对象的大小、比例和遮挡条件等。因为很难直接对映射进行建模将这些因素与正锚点的数量函数联系起来,
  我们提出了一种简单但有效的方法,根据预测边界框和 gts 之间的 IoU 值粗略估计每个 gt 的正锚点的适当数量。具体来说,对于每个 gt,我们根据 IoU 值选择前 q 个预测。这些 IoU 值相加表示该 gt 的正锚点的估计数量。我们将此方法命名为动态 k 估计。
  这种估计方法基于以下直觉:某个gt的正anchor的适当数量应该与很好地回归该gt的anchor的数量正相关。

文章中对对固定 k 和动态 k 估计策略进行了详细比较。如下图:
在这里插入图片描述
实验表明了,动态k的选取,会带来性能上的提升。

整体流程

OTA 的可视化如图 2 所示。
在这里插入图片描述

算法流程如下:
文字表述如下:

  • 第一步:获得 真实框和类别。从输入数据中读取即可。
  • 第二步:输入图片,得到 预测框 和 预测类别。
  • 第三步:计算 真实框 和 预测框 之际的 IOU,算前面 q=20 个IOU的总和来确定每个 gt 框需要匹配的 anchor 的个数 s i s_i si(被称作 dynamic k)。
  • 第四步:计算 背景 需要负责的 anchor 的个数。 s m + 1 = n − ∑ i = 0 m s i s_{m+1} = n - \sum_{i=0}^{m}s_i sm+1=ni=0msi。就是没有 gt 框要的那些 anchor,背景要了。
  • 第五步:计算每个 gt 对所有 anchor 的 cost(包括分类 cost、回归 cost、中心点 cost)
  • 第六步:优化 cost,得到最优传输方案 π*
  • 第七步:每个 gt 根据前面计算得到的负责的 anchor 个数,则选择该 gt 对应的该行中,前 top-k 个位置的 anchor 作为候选框。
  • 如果多个 gt 对应了一个 anchor,则在这几个 gt 中选择 cost 最小的,对该 anchor 负责。

论文流程如下:
在这里插入图片描述

代码


import torch.nn.functional as F
from utils.general import xywh2xyxy

def box_iou(box1, box2, eps=1e-7):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
    inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)

    # IoU = inter / (area1 + area2 - inter)
    return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)

def de_parallel(model):
    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
    return model.module if is_parallel(model) else model

def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = x[..., 0] - x[..., 2] / 2  # top left x
    y[..., 1] = x[..., 1] - x[..., 3] / 2  # top left y
    y[..., 2] = x[..., 0] + x[..., 2] / 2  # bottom right x
    y[..., 3] = x[..., 1] + x[..., 3] / 2  # bottom right y
    return y
   
class ComputeLossOTA:
    # Compute losses
    def __init__(self, model, autobalance=False):
        super(ComputeLossOTA, self).__init__()
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        det = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02])  # P3-P7
        self.ssi = list(det.stride).index(16) if autobalance else 0  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
        for k in 'na', 'nc', 'nl', 'anchors', 'stride':
            setattr(self, k, getattr(det, k))

    def __call__(self, p, targets, imgs):  # predictions, targets, model   
        device = targets.device
        lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
        bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs)
        pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p] 
    

        # Losses
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj

            n = b.shape[0]  # number of targets
            if n:
                ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets

                # Regression
                grid = torch.stack([gi, gj], dim=1)
                pxy = ps[:, :2].sigmoid() * 2. - 0.5
                #pxy = ps[:, :2].sigmoid() * 3. - 1.
                pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i]
                selected_tbox[:, :2] -= grid
                iou = bbox_iou(pbox, selected_tbox, CIoU=True)  # iou(prediction, target)
                if type(iou) is tuple:
                    lbox += (iou[1].detach() * (1 - iou[0])).mean()
                    iou = iou[0]
                else:
                    lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype)  # iou ratio

                # Classification
                selected_tcls = targets[i][:, 1].long()
                if self.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(ps[:, 5:], self.cn, device=device)  # targets
                    t[range(n), selected_tcls] = self.cp
                    lcls += self.BCEcls(ps[:, 5:], t)  # BCE

                # Append targets to text file
                # with open('targets.txt', 'a') as file:
                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

            obji = self.BCEobj(pi[..., 4], tobj)
            lobj += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
        lbox *= self.hyp['box']
        lobj *= self.hyp['obj']
        lcls *= self.hyp['cls']
        bs = tobj.shape[0]  # batch size

        loss = lbox + lobj + lcls
        return loss * bs, torch.cat((lbox, lobj, lcls)).detach()

    def build_targets(self, p, targets, imgs):
        indices, anch = self.find_3_positive(p, targets)
        device = torch.device(targets.device)
        matching_bs = [[] for pp in p]
        matching_as = [[] for pp in p]
        matching_gjs = [[] for pp in p]
        matching_gis = [[] for pp in p]
        matching_targets = [[] for pp in p]
        matching_anchs = [[] for pp in p]
        
        nl = len(p)    
    
        for batch_idx in range(p[0].shape[0]):
        
            b_idx = targets[:, 0]==batch_idx
            this_target = targets[b_idx]
            if this_target.shape[0] == 0:
                continue
                
            txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]
            txyxy = xywh2xyxy(txywh)

            pxyxys = []
            p_cls = []
            p_obj = []
            from_which_layer = []
            all_b = []
            all_a = []
            all_gj = []
            all_gi = []
            all_anch = []
            
            for i, pi in enumerate(p):
                
                b, a, gj, gi = indices[i]
                idx = (b == batch_idx)
                b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]                
                all_b.append(b)
                all_a.append(a)
                all_gj.append(gj)
                all_gi.append(gi)
                all_anch.append(anch[i][idx])
                from_which_layer.append((torch.ones(size=(len(b),)) * i).to(device))
                
                fg_pred = pi[b, a, gj, gi]                
                p_obj.append(fg_pred[:, 4:5])
                p_cls.append(fg_pred[:, 5:])
                
                grid = torch.stack([gi, gj], dim=1)
                pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.
                #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]
                pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.
                pxywh = torch.cat([pxy, pwh], dim=-1)
                pxyxy = xywh2xyxy(pxywh)
                pxyxys.append(pxyxy)
            
            pxyxys = torch.cat(pxyxys, dim=0)
            if pxyxys.shape[0] == 0:
                continue
            p_obj = torch.cat(p_obj, dim=0)
            p_cls = torch.cat(p_cls, dim=0)
            from_which_layer = torch.cat(from_which_layer, dim=0)
            all_b = torch.cat(all_b, dim=0)
            all_a = torch.cat(all_a, dim=0)
            all_gj = torch.cat(all_gj, dim=0)
            all_gi = torch.cat(all_gi, dim=0)
            all_anch = torch.cat(all_anch, dim=0)
        
            pair_wise_iou = box_iou(txyxy, pxyxys)

            pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)

            top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)
            dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)

            gt_cls_per_image = (
                F.one_hot(this_target[:, 1].to(torch.int64), self.nc)
                .float()
                .unsqueeze(1)
                .repeat(1, pxyxys.shape[0], 1)
            )

            num_gt = this_target.shape[0]
            cls_preds_ = (
                p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
                * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
            )

            y = cls_preds_.sqrt_()
            pair_wise_cls_loss = F.binary_cross_entropy_with_logits(
               torch.log(y/(1-y)) , gt_cls_per_image, reduction="none"
            ).sum(-1)
            del cls_preds_
        
            cost = (
                pair_wise_cls_loss
                + 3.0 * pair_wise_iou_loss
            )

            matching_matrix = torch.zeros_like(cost, device=device)

            for gt_idx in range(num_gt):
                _, pos_idx = torch.topk(
                    cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
                )
                matching_matrix[gt_idx][pos_idx] = 1.0

            del top_k, dynamic_ks
            anchor_matching_gt = matching_matrix.sum(0)
            if (anchor_matching_gt > 1).sum() > 0:
                _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
                matching_matrix[:, anchor_matching_gt > 1] *= 0.0
                matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
            fg_mask_inboxes = (matching_matrix.sum(0) > 0.0).to(device)
            matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
        
            from_which_layer = from_which_layer[fg_mask_inboxes]
            all_b = all_b[fg_mask_inboxes]
            all_a = all_a[fg_mask_inboxes]
            all_gj = all_gj[fg_mask_inboxes]
            all_gi = all_gi[fg_mask_inboxes]
            all_anch = all_anch[fg_mask_inboxes]
        
            this_target = this_target[matched_gt_inds]
        
            for i in range(nl):
                layer_idx = from_which_layer == i
                matching_bs[i].append(all_b[layer_idx])
                matching_as[i].append(all_a[layer_idx])
                matching_gjs[i].append(all_gj[layer_idx])
                matching_gis[i].append(all_gi[layer_idx])
                matching_targets[i].append(this_target[layer_idx])
                matching_anchs[i].append(all_anch[layer_idx])

        for i in range(nl):
            if matching_targets[i] != []:
                matching_bs[i] = torch.cat(matching_bs[i], dim=0)
                matching_as[i] = torch.cat(matching_as[i], dim=0)
                matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)
                matching_gis[i] = torch.cat(matching_gis[i], dim=0)
                matching_targets[i] = torch.cat(matching_targets[i], dim=0)
                matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)
            else:
                matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
                matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
                matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
                matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
                matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)
                matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)

        return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs           

    def find_3_positive(self, p, targets):
        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
        na, nt = self.na, targets.shape[0]  # number of anchors, targets
        indices, anch = [], []
        gain = torch.ones(7, device=targets.device).long()  # normalized to gridspace gain
        ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
        targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices

        g = 0.5  # bias
        off = torch.tensor([[0, 0],
                            [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
                            # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                            ], device=targets.device).float() * g  # offsets

        for i in range(self.nl):
            anchors = self.anchors[i]
            gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain

            # Match targets to anchors
            t = targets * gain
            if nt:
                # Matches
                r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
                j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t']  # compare
                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
                t = t[j]  # filter

                # Offsets
                gxy = t[:, 2:4]  # grid xy
                gxi = gain[[2, 3]] - gxy  # inverse
                j, k = ((gxy % 1. < g) & (gxy > 1.)).T
                l, m = ((gxi % 1. < g) & (gxi > 1.)).T
                j = torch.stack((torch.ones_like(j), j, k, l, m))
                t = t.repeat((5, 1, 1))[j]
                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
            else:
                t = targets[0]
                offsets = 0

            # Define
            b, c = t[:, :2].long().T  # image, class
            gxy = t[:, 2:4]  # grid xy
            gwh = t[:, 4:6]  # grid wh
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid xy indices

            # Append
            a = t[:, 6].long()  # anchor indices
            indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
            anch.append(anchors[a])  # anchors

        return indices, anch

大神仓库:连接。、
大神CSDN:连接。

使用

在yolov5 7.0 版本中,训练 coco 数据,采用了预训练权重,采用的命令行如下:

python train.py --data coco.yaml --weights yolov5s.pt --img 640 --batch-size 32

训练过程如下:
在这里插入图片描述
目前来看 loss 呈现,先上升再下降的趋势。等训练完 100 epoch 来再比较一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1124639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

做数据可视化,谨记三大要点

数据可视化报表就是“一图胜千言”的最佳例子。数据可视化&#xff0c;也就是将数据图形化、图表化&#xff0c;以良好的视觉效果呈现数据&#xff0c;达到发现、分析、预测、监控、决策等目的。要想做出一份优秀的数据可视化报表&#xff0c;那就要在做报表时谨记三大要点&…

3D模型在线格式转换工具

单模型上传格式 支持格式说明 支持RAR和ZIP压缩包上传&#xff0c;压缩包大小按原始文件大小计算&#xff0c;压缩包内只能包含一个模型文件 超过500MB的模型请联系客服 您也可以下载老子云客户端进行批量上传 不同会员级别的模型上传大小有不同的限制&#xff0c;详情请查询…

越来越好用的Edge浏览器,盘点Edge浏览器功能丨插件

前些年&#xff0c; Edge 浏览器也宣布加入 Chromium 内核&#xff1b;它的前身是IE浏览器&#xff0c; Edge之所以越来越多人用的一个原因是因为它的内核是Google Chrome的Chromium&#xff0c;而且不需要膜法就可以使用&#xff0c;这一点Chrome浏览器还不行&#xff0c;访问…

分拣设备运动仿真

这一次我们来分享一下如何在Solidworks 中做出传送台的分拣动作并通过分拣动作生成过程动画&#xff0c;以便于我们可以用于产品展示又或者验证运行程序无误的情况下结构是否会影响输送效率。 首先创建一个新的运动算例 将窗口切换至Motion分析 在设置之前我们先理清设置传送带…

税务某局 webpack 登录接口逆向分析

持续创作文章&#xff0c;只是为了更好的思考 这里不多介绍了&#xff0c;我放一张图大家就明白是什么接口了。这里只介绍整体加密逻辑&#xff0c;有些细的地方大家自行调整。 本次逆向的网址是 aHR0cHM6Ly90cGFzcy5qaWxpbi5jaGluYXRheC5nb3YuY246ODQ0My8jL2xvZ2luP3JlZGly…

vue3实现详情页返回列表页,返回原来列表页滚动条所在的位置

keepAlive缓存页面 组合式API 第一步第二步第三步第四步 第一步 首先在路由文件的meta里面定义 meta: {keepAlive: false, },第二步 在app.vue 根文件下定义代码 <template><keep-alive><router-view v-if"route.meta.keepAlive" /></keep-…

基于springboot实现广场舞团平台系统项目【项目源码+论文说明】

基于springboot实现广场舞团管理平台系统 摘要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&am…

软设上午题错题知识点8

软设上午题错题知识点8 1、IPv4用32位二进制表示&#xff0c;能够表示的地址空间是232&#xff0c;IPv6用128位二进制表示&#xff0c;能够表示的地址空间是2128&#xff0c;本题选择2128 /232296 。 2、在应用散列函数构造哈希表&#xff08;或散列表&#xff09;时&#xf…

使用docker部署flask接口服务 一

文章目录 一&#xff1a;说明二&#xff1a;dockerfile 参数说明1. 一般常用的 参数&#xff0c;以及它的含义2. 我自己的 dockerfile 三&#xff1a;示例操作1. Gunicorn Gevent启动服务的好处2. 用Gunicorn Gevent的好处&#xff1a;3. Gunicorn Gevent的 使用示例4. 创建…

“数字赋能、智创未来”第三届中国(宁波)软件峰会暨程序员节即将开启

在“八八战略”的指引下,我们深入实施数字经济创新提质“一号发展工程”,以打造“全球智造创新之都”为目标,强化数字赋能、绿色赋能、低碳赋能、融合赋能,全速推动数字经济和实体经济深度融合。第三届(宁波)软件峰会暨程序员节将于10月24日下午在宁波泛太平洋大酒店三楼大宴会…

优优嗨聚集团:旅游经济繁荣,助力当地外卖市场崛起

随着全球旅游经济的飞速发展&#xff0c;越来越多的人选择在假期或周末出游。而在旅游过程中&#xff0c;餐饮是一个不可或缺的环节。近年来&#xff0c;随着移动支付和互联网技术的普及&#xff0c;外卖行业逐渐崛起&#xff0c;为旅游经济注入了新的活力。 一、旅游经济带动外…

口袋参谋:如何一键获取竞品数据?这招实用!

​在淘宝天猫上开店&#xff0c;市场竞争日益激烈&#xff0c;想要做好店铺&#xff0c;我们就不得不去分析竞品的数据了。 很多卖家开店后&#xff0c;一上来就直接卡在类目前10&#xff0c;折腾了一两个月才发现自己对标错了对象&#xff0c;最终竹篮打水一场空。 所以&…

Linux下 /etc/shadow内容详解

/etc/shadow 文件&#xff0c;用于存储 Linux 系统中用户的密码信息&#xff0c;又称为“影子文件”。 前面介绍了 /etc/passwd 文件&#xff0c;由于该文件允许所有用户读取&#xff0c;易导致用户密码泄露&#xff0c;因此 Linux 系统将用户的密码信息从 /etc/passwd 文件中…

以赛促教,以赛促研 ——计算机科学系举办“火焰杯”软件测试开发选拔赛颁奖仪式

颁奖仪式 2023年3月9日&#xff0c;第三届“火焰杯”软件测试开发选拔赛颁奖仪式在南海楼124会议室举行&#xff0c;计算机科学系系主任龙锦益教授、指导老师孙玉霞副教授、测吧科技有限公司王雪冬总监及获奖同学参加了颁奖仪式。 会议伊始&#xff0c;龙锦益教授对王雪冬总监…

安防视频监控平台EasyCVR查询告警后,无法自动清除记录该如何优化?

视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;在视频监控播放上&#xff0c;视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放&#xff0c;可同时播放多路视频流&#xff0c;也能支…

中国芯片制造厂商无惧封禁,订单一路飙升 | 百能云芯

随着美国对中国半导体行业实施更严格的限制措施&#xff0c;中国的芯片制造厂商成为了不可忽视的受益者。根据外媒报道&#xff0c;中国顶尖的芯片代工厂为了加速自主科技发展&#xff0c;已经开始更多地依赖国内制造的设备&#xff0c;这导致了中国芯片制造厂商近几个月来接到…

前端KOA搭建服务器——part1

目录 koa简介前端项目搭建koa环境第一步&#xff1a;新建项目第二步&#xff1a;环境初始化&#xff0c;安装依赖初始化项目&#xff0c;生成package.json文件安装koa依赖安装koa-router 路由管理依赖安装dotenv 环境变量依赖安装nodemon 热启动依赖 第三步&#xff1a;代码调用…

LeetCode讲解篇之面试题 10.11. 峰与谷

文章目录 题目描述题解思路题解代码 题目描述 题解思路 倒序遍历数组 若当前下标为偶数&#xff0c;则为峰&#xff0c;若左值大于当前值&#xff0c;则交换 若当前下标为奇数&#xff0c;则为谷&#xff0c;若左值小于当前值&#xff0c;则交换 题解代码 func wiggleSort…

ATA-2161高压放大器在压电薄膜传感器心脏监测研究中的应用

近年来&#xff0c;随着医疗技术的不断进步和人们对健康关注的增加&#xff0c;心脏疾病的早期监测与预防成为了研究的热点。压电薄膜传感器作为一种重要的生物传感器&#xff0c;在心脏监测领域发挥着重要的作用。而高压放大器作为压电薄膜传感器的关键驱动设备&#xff0c;对…

组合大招!XPS、BET联合开课,零基础也能让你快速刷经验升级-科学指南针

开课啦&#xff01;科学指南针精品公开课——XPS、BET联合开课啦&#xff01; 下面就由小编带领大家了解一下 8月30日、9月1日那两天可以学到什么吧~ 一&#xff1a;XPS课程 Vol.1 课程介绍 X射线光电子能谱仪 (X-ray Photoelectron Spectroscopy 简称XPS) &#xff0c;又称…