【Arduino TFT】基于 ESP32S3 S7789 240x240 TFT实现的龙猫太空人天气时钟

news2024/11/16 0:49:56

忘记过去,超越自己

  • ❤️ 博客主页 单片机菜鸟哥,一个野生非专业硬件IOT爱好者 ❤️
  • ❤️ 本篇创建记录 2023-10-21 ❤️
  • ❤️ 本篇更新记录 2023-10-21 ❤️
  • 🎉 欢迎关注 🔎点赞 👍收藏 ⭐️留言📝
  • 🙏 此博客均由博主单独编写,不存在任何商业团队运营,如发现错误,请留言轰炸哦!及时修正!感谢支持!
  • 🔥 Arduino ESP8266教程累计帮助过超过1W+同学入门学习硬件网络编程,入选过选修课程,刊登过无线电杂志 🔥零基础从入门到熟悉Arduino平台下开发ESP8266,同时会涉及网络编程知识。专栏文章累计超过60篇,分为基础篇、网络篇、应用篇、高级篇,涵盖ESP8266大部分开发技巧。

快速导航
单片机菜鸟的博客快速索引(快速找到你要的)

如果觉得有用,麻烦点赞收藏,您的支持是博主创作的动力。

文章目录

    • 1. 前言
    • 2. 软件代码
      • 2.1 TFT屏幕的配置文件
      • 2.2 主工程代码
      • 2.3 tft显示代码
      • 2.4 睡眠模式
      • 2.5 获取天气信息

1. 前言

在这里插入图片描述

2. 软件代码

在这里插入图片描述

2.1 TFT屏幕的配置文件

//                            USER DEFINED SETTINGS
//   Set driver type, fonts to be loaded, pins used and SPI control method etc
//
//   See the User_Setup_Select.h file if you wish to be able to define multiple
//   setups and then easily select which setup file is used by the compiler.
//
//   If this file is edited correctly then all the library example sketches should
//   run without the need to make any more changes for a particular hardware setup!
//   Note that some sketches are designed for a particular TFT pixel width/height

// User defined information reported by "Read_User_Setup" test & diagnostics example
#define USER_SETUP_INFO "User_Setup"

// Define to disable all #warnings in library (can be put in User_Setup_Select.h)
//#define DISABLE_ALL_LIBRARY_WARNINGS

// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################

// Define STM32 to invoke optimised processor support (only for STM32)
//#define STM32

// Defining the STM32 board allows the library to optimise the performance
// for UNO compatible "MCUfriend" style shields
//#define NUCLEO_64_TFT
//#define NUCLEO_144_TFT

// STM32 8 bit parallel only:
// If STN32 Port A or B pins 0-7 are used for 8 bit parallel data bus bits 0-7
// then this will improve rendering performance by a factor of ~8x
//#define STM_PORTA_DATA_BUS
//#define STM_PORTB_DATA_BUS

// Tell the library to use parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT
//#defined TFT_PARALLEL_16_BIT // **** 16 bit parallel ONLY for RP2040 processor ****

// Display type -  only define if RPi display
//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI

// Only define one driver, the other ones must be commented out
//#define ILI9341_DRIVER       // Generic driver for common displays
//#define ILI9341_2_DRIVER     // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172
//#define ST7735_DRIVER      // Define additional parameters below for this display
//#define ILI9163_DRIVER     // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//#define ILI9488_DRIVER     // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
#define ST7789_DRIVER      // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER    // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER
//#define ST7796_DRIVER
//#define SSD1351_DRIVER
//#define SSD1963_480_DRIVER
//#define SSD1963_800_DRIVER
//#define SSD1963_800ALT_DRIVER
//#define ILI9225_DRIVER
//#define GC9A01_DRIVER

// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:

// #define TFT_SDA_READ      // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only

// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display

//  #define TFT_RGB_ORDER TFT_RGB  // Colour order Red-Green-Blue
//  #define TFT_RGB_ORDER TFT_BGR  // Colour order Blue-Green-Red
//  #define TFT_INVERSION_OFF
// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below

// #define M5STACK

// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation
// #define TFT_WIDTH  80
// #define TFT_WIDTH  128
// #define TFT_WIDTH  172 // ST7789 172 x 320
#define TFT_WIDTH  240 // ST7789 240 x 240 and 240 x 320
// #define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
#define TFT_HEIGHT 240 // ST7789 240 x 240
// #define TFT_HEIGHT 320 // ST7789 240 x 320
// #define TFT_HEIGHT 240 // GC9A01 240 x 240

// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or stray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:

// #define ST7735_INITB
// #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128    // For 128 x 128 display
// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_ROBOTLCD       // For some RobotLCD arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT)
// #define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80   // For 160 x 80 display with 24 pixel offset

// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.

// #define TFT_INVERSION_ON
// #define TFT_INVERSION_OFF


// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################

// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);

// #define TFT_BL   32            // LED back-light control pin
// #define TFT_BACKLIGHT_ON HIGH  // Level to turn ON back-light (HIGH or LOW)



// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO  to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED       to NodeMCU pin VIN (or 5V, see below)
// Display SCK       to NodeMCU pin D5
// Display SDI/MOSI  to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET     to NodeMCU pin D4 (or RST, see below)
// Display CS        to NodeMCU pin D8 (or GND, see below)
// Display GND       to NodeMCU pin GND (0V)
// Display VCC       to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labelled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######

// // For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
// #define TFT_CS   PIN_D8  // Chip select control pin D8
// #define TFT_DC   PIN_D3  // Data Command control pin
// #define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
// //#define TFT_RST  -1    // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V

//#define TFT_BL PIN_D1  // LED back-light (only for ST7789 with backlight control pin)

//#define TOUCH_CS PIN_D2     // Chip select pin (T_CS) of touch screen

//#define TFT_WR PIN_D2       // Write strobe for modified Raspberry Pi TFT only


// ######  FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES  ######

// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions. It is best not to connect MISO as some displays
// do not tristate that line when chip select is high!
// Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller
// cannot be connected as well to the same SPI signals.
// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode
// On NodeMCU V3  S0 =MISO, S1 =MOSI, S2 =SCLK
// In ESP8266 overlap mode the following must be defined

//#define TFT_SPI_OVERLAP

// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS   PIN_D3
//#define TFT_DC   PIN_D5  // Data Command control pin
//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1  // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP   ######

// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins

// #define TFT_MISO 19
// #define TFT_MOSI 23
// #define TFT_SCLK 18
// #define TFT_CS   15  // Chip select control pin
// #define TFT_DC    2  // Data Command control pin
// #define TFT_RST   4  // Reset pin (could connect to RST pin)
// #define TFT_RST  -1  // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST

// For ESP32 Dev board (only tested with GC9A01 display)
// The hardware SPI can be mapped to any pins

//#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on.
//#define TFT_SCLK 14
//#define TFT_CS   5  // Chip select control pin
//#define TFT_DC   27  // Data Command control pin
//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL   22  // LED back-light

//#define TOUCH_CS 21     // Chip select pin (T_CS) of touch screen

//#define TFT_WR 22    // Write strobe for modified Raspberry Pi TFT only

// For the M5Stack module use these #define lines
//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS   14  // Chip select control pin
//#define TFT_DC   27  // Data Command control pin
//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
//#define TFT_BL   32  // LED back-light (required for M5Stack)

// ######       EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP        ######

// The library supports 8 bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!

// Parallel bus is only supported for the STM32 and ESP32
// Example below is for ESP32 Parallel interface with UNO displays

// Tell the library to use 8 bit parallel mode (otherwise SPI is assumed)
//#define TFT_PARALLEL_8_BIT

// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS   33  // Chip select control pin (library pulls permanently low
//#define TFT_DC   15  // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST  32  // Reset pin, toggles on startup

//#define TFT_WR    4  // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD    2  // Read strobe control pin

//#define TFT_D0   12  // Must use pins in the range 0-31 for the data bus
//#define TFT_D1   13  // so a single register write sets/clears all bits.
//#define TFT_D2   26  // Pins can be randomly assigned, this does not affect
//#define TFT_D3   25  // TFT screen update performance.
//#define TFT_D4   17
//#define TFT_D5   16
//#define TFT_D6   27
//#define TFT_D7   14

// ######       EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP        ######

// The TFT can be connected to SPI port 1 or 2
//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz
//#define TFT_MOSI PA7
//#define TFT_MISO PA6
//#define TFT_SCLK PA5

//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz
//#define TFT_MOSI PB15
//#define TFT_MISO PB14
//#define TFT_SCLK PB13

// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select
//#define TFT_CS   D5 // Chip select control pin to TFT CS
//#define TFT_DC   D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)
//#define TFT_RST  D7 // Reset pin to TFT RST (or RESET)
// OR alternatively, we can use STM32 port reference names PXnn
//#define TFT_CS   PE11 // Nucleo-F767ZI equivalent of D5
//#define TFT_DC   PE9  // Nucleo-F767ZI equivalent of D6
//#define TFT_RST  PF13 // Nucleo-F767ZI equivalent of D7

//#define TFT_RST  -1   // Set TFT_RST to -1 if the display RESET is connected to processor reset
                        // Use an Arduino pin for initial testing as connecting to processor reset
                        // may not work (pulse too short at power up?)


// #define TFT_MISO 19
// #define TFT_MOSI 23 // In some display driver board, it might be written as "SDA" and so on.
// #define TFT_SCLK 18
// #define TFT_CS   -1  // Chip select control pin
// #define TFT_DC   16  // Data Command control pin
// #define TFT_RST  17  // Reset pin (could connect to Arduino RESET pin)
// #define TFT_BL   4  // LED back-light

#define TFT_CS   -1 //     10 or 34 (FSPI CS0)
#define TFT_MOSI 11 //     11 or 35 (FSPI D)
#define TFT_SCLK 12 //     12 or 36 (FSPI CLK)
#define TFT_MISO -1 //     13 or 37 (FSPI Q)

// Use pins in range 0-31
#define TFT_DC    7
#define TFT_RST   6
#define TFT_BL   4  // LED back-light

// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################

// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!

#define LOAD_GLCD   // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2  // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4  // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6  // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7  // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8  // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF  // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts

// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT


// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################

// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface.
//#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface

// For RP2040 processor and 8 or 16 bit parallel displays:
// The parallel interface write cycle period is derived from a division of the CPU clock
// speed so scales with the processor clock. This means that the divider ratio may need
// to be increased when overclocking. I may also need to be adjusted dependant on the
// display controller type (ILI94341, HX8357C etc). If RP2040_PIO_CLK_DIV is not defined
// the library will set default values which may not suit your display.
// The display controller data sheet will specify the minimum write cycle period. The
// controllers often work reliably for shorter periods, however if the period is too short
// the display may not initialise or graphics will become corrupted.
// PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV))
//#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock
//#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock

// For the RP2040 processor define the SPI port channel used (default 0 if undefined)
//#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used

// For the STM32 processor define the SPI port channel used (default 1 if undefined)
//#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2

// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.

// #define SPI_FREQUENCY   1000000
// #define SPI_FREQUENCY   5000000
// #define SPI_FREQUENCY  10000000
// #define SPI_FREQUENCY  20000000
// #define SPI_FREQUENCY  27000000
#define SPI_FREQUENCY  27000000
// #define SPI_FREQUENCY  40000000
// #define SPI_FREQUENCY  55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)
// #define SPI_FREQUENCY  80000000

// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY  20000000

// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY  2500000

// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT

// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!

// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.

// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect

// #define SUPPORT_TRANSACTIONS

2.2 主工程代码

/*
 * 程序硬件介绍 ESP32 + LCD屏幕(ST7789)
 * 屏幕使用的中景园1.3寸240分辨率全彩屏幕,具体请自己参考引脚定义
 */
#include <Arduino.h>
#include <ArduinoJson.h>
#include <TimeLib.h>
#include <WiFi.h>
#include <WiFiUdp.h>
#include <HTTPClient.h>
#include <TFT_eSPI.h>
#include <SPI.h>
#include <TJpg_Decoder.h>
#include <esp_sleep.h>

#include "font/ZdyLwFont_20.h"
#include "font/FxLED_32.h"
#include "img/gif.h"
#include "img/temperature.h"
#include "img/humidity.h"
#include "img/watch_top.h"
#include "img/watch_bottom.h"

const char ssid[] = "CMCC-pm3h";            // WIFI名称
const char password[] = "hw2htwv4";    // WIFI密码
String cityCode = "101280101";           // 天气城市代码,广州

// 睡眠
#define ENABLE_SLEEP                 1     // 是否启用夜间睡眠模式
#define SLEEP_COUNT_NIGHT_MAX        12    // 需要跳过几次,20-8点不更新
#define SLEEP_TIME_START             20    // 20点开始休眠
#define SLEEP_TIME_END               7     // 8点结束休眠
#define SLEEP_TIME_NIGHT             60    // 夜间休眠60min
#define SLEEP_TIME_DAY               10    // 白天休眠10min

TFT_eSPI tft = TFT_eSPI();              // 引脚请自行配置tft_espi库中的 User_Setup.h文件
TFT_eSprite clk = TFT_eSprite(&tft);

void setup() {
  Serial.begin(115200);

//  #if ENABLE_SLEEP //不休眠
//    sleep_at_night(0); //自动休眠检查
//  #endif
  print_wakeup_reason();
  tft_init(); //屏幕初始化

  //连接wifi,并刷新进度条
  if(!wifi_connect()) {
    // wifi连接失败进入休眠,休眠时长 SLEEP_TIME_DAY
    esp_sleep(SLEEP_TIME_DAY);
  }

  ntp_init(); //ntp服务初始化
  //getCityCode(); //根据IP自动获取城市代码,用于后续天气显示
  tft_display_loading_complete();   // 将进度条刷到100%
  tft_display_layout();             // 绘制屏幕布局
}

time_t time_old = 0; //上次时间刷新时间
time_t weather_old = 0; //上次天气获取时间
time_t banner_old = 0; //上次banner刷新时间
time_t time_now = 0; //当前秒
time_t hour_old = 0;
time_t hour_now = 0;
bool isChangeMode = false; // 定义是否切换动图样式

void loop(){
  time_now = now();
  hour_now = hour();

  //刷新时间信息,每秒刷新
  if (time_now != time_old)
  {
    time_old = time_now;
    tft_display_time();

    //整点报时
    if(hour_now != hour_old)
    {
      hour_old = hour_now;
      isChangeMode = true;
      #if ENABLE_SLEEP //不休眠
        //夜间休眠
        if(hour_now >= SLEEP_TIME_START || hour_now <= SLEEP_TIME_END){
          sleep_at_night(1); // 立即休眠
        }
      #endif
    }
  }

  // 刷新天气信息,每30分钟刷新
  if (time_now - weather_old > 30 * 60){
    weather_old = time_now;
    getCityWeater();
  }
  
  // 刷新banner,每3秒刷新
  if (time_now - banner_old > 2){
    banner_old = time_now;
    tft_display_banner();
  }

  // 刷新gif
  tft_display_gif(isChangeMode);
  if(isChangeMode) isChangeMode= false;
}

2.3 tft显示代码

//初始化屏幕
extern void tft_init(void){
  tft.begin();           // TFT初始化
  tft.setRotation(0);    // 旋转角度0-3
  tft.setTextColor(TFT_BLACK, TFT_WHITE); //设置字体颜色
  tft.fillScreen(TFT_BLACK); // 清屏
  
  TJpgDec.setJpgScale(1);       // 设置放大倍数
  TJpgDec.setSwapBytes(true);   // 它的作用是设置TFT液晶屏的像素字节序。在某些情况下,像素字节序可能需要被交换,以确保图像正确显示。这段代码中的true表示需要交换字节序,而false则表示不需要交换字节序。
  TJpgDec.setCallback(tft_output);  // 回调函数
}

extern bool tft_output(int16_t x, int16_t y, uint16_t w, uint16_t h, uint16_t *bitmap) {
  if (y >= tft.height())
    return 0;
  // 这句代码是将一个位图(bitmap)显示在TFT屏幕上,其中x和y是位图左上角的坐标,w和h是位图的宽度和高度。具体来说,它将位图的像素数据推送到TFT屏幕上,从而在指定的位置显示出来。
  tft.pushImage(x, y, w, h, bitmap);
  return 1;
}

// 进度条
byte loadNum = 6;
extern void tft_display_loading(byte delayTime){
  clk.setColorDepth(8);                                // 设置TFT屏幕的颜色深度为8位。TFT屏幕的颜色深度指的是每个像素点可以显示的颜色数量,8位颜色深度可以显示256种颜色。
  clk.createSprite(200, 50);                           // 创建Sprite
  clk.fillSprite(TFT_BLACK);                           // 填充颜色:黑色

  clk.drawRoundRect(0, 0, 200, 16, 8, TFT_WHITE);      // 画一个圆角矩形框,白色
  clk.fillRoundRect(3, 3, loadNum, 10, 5, TFT_WHITE);  // 画一个填充的圆角矩形,白色
  clk.setTextDatum(CC_DATUM);                          // 设置文本显示基准为居中对齐
  clk.setTextColor(TFT_GREEN, TFT_BLACK);              // 设置文本的前景色和背景色
  clk.drawString("Connecting to WiFi", 100, 40, 2);    // 显示“Connecting to WiFi”这个字符串,位置为(100,40),字体大小为2。
  clk.pushSprite(20, 110);                             // Sprite中内容一次推向屏幕
  clk.deleteSprite();                                  // 删除Sprite
  loadNum += 1;
  if (loadNum >= 194)
  {
    loadNum = 194;
  }
  delay(delayTime);
}

// 将进度条刷到100%
extern void tft_display_loading_complete(void){
  while (loadNum < 194) { //让动画走完
    tft_display_loading(1);
  }
} 

// 绘制屏幕布局
extern void tft_display_layout(void){
  //绘制顶部视图
  //TJpgDec.drawJpg(0, 0, watchtop, sizeof(watchtop));
  //绘制底部视图
  //TJpgDec.drawJpg(0, 220, watchbottom, sizeof(watchbottom));
  //绘制中间显示窗口
  tft.setViewport(0, 0, 240, 240);                 // 设置TFT屏幕的裁剪区域,即在屏幕上显示的区域。其中,(0,0)是起始坐标,(240,240)是宽度和高度。这意味着只有在这个区域内的图像才会被显示在屏幕上,超出这个区域的部分将被裁剪掉。
  tft.fillScreen(TFT_BLACK);                       // 填充颜色:黑色
  tft.fillRoundRect(0, 0, 240, 240, 7, TFT_WHITE); // 表示在TFT屏幕上绘制一个左上角坐标为(0, 0),宽度和高度均为240像素,圆角半径为7像素,填充颜色为白色的圆角矩形。

  // 在窗口内绘制线框,黑色边框
  tft.drawFastHLine(0, 34, 240, TFT_BLACK);        // 在屏幕上从(0,34)这个点开始,绘制一条长度为240像素,颜色为黑色的水平线条
  tft.drawFastVLine(150, 0, 34, TFT_BLACK);        // 在屏幕上从(150,0)这个点开始,绘制一条长度为34像素,颜色为黑色的垂直线条
  tft.drawFastHLine(0, 206, 240, TFT_BLACK);       // 表示在屏幕上从(0,206)这个点开始,绘制一条长度为240像素,颜色为黑色的水平线条
  tft.drawFastVLine(60, 206, 34, TFT_BLACK);       // 在屏幕上从(60,206)这个点开始,绘制长度为34像素,颜色为黑色的垂直线条
  tft.drawFastVLine(160, 206, 34, TFT_BLACK);      // 在屏幕上从(160,206)这个点开始,绘制长度为34像素,颜色为黑色的垂直线条

  // 在窗口内绘制图标
  TJpgDec.drawJpg(162, 150, humidity, sizeof(humidity));       //湿度图标
  TJpgDec.drawJpg(163, 210, temperature, sizeof(temperature)); //温度图标
}

// 刷新时间显示
extern void tft_display_time(void){
  // 记录上一次时间
  static String hourMinute_old = "";
  static String second_old = "";
  static String week_old = "";
  static String monthDay_old = "";

  String hourMinute_now = hourMinute();
  String second_now = num2str(second());
  String week_now = week();
  String monthDay_now = monthDay();

  clk.setColorDepth(8);                       // 设置TFT屏幕的颜色深度为8位。TFT屏幕的颜色深度指的是每个像素点可以显示的颜色数量,8位颜色深度可以显示256种颜色。

  //--------------------中间时间区显示开始--------------------
  // 时分
  if(hourMinute_now != hourMinute_old){
    hourMinute_old = hourMinute_now;

    clk.createSprite(140, 48);    // 创建Sprite,先在Sprite内存中画点,然后将内存中的点一次推向屏幕,这样刷新比较快
    clk.fillSprite(TFT_WHITE);    // 填充颜色:白色
    //clk.loadFont(FxLED_48);
    clk.setTextDatum(CC_DATUM);   // 设置文本显示基准为居中对齐。
    clk.setTextColor(TFT_BLACK, TFT_WHITE);    // 文本的前景色和背景色
    clk.drawString(hourMinute_now, 70, 24, 7); // 绘制显示时和分,位置为(70,24),字体大小为 7。
    //clk.unloadFont();
    clk.pushSprite(28, 40);                    // Sprite中内容一次推向屏幕
    clk.deleteSprite();                        // 删除Sprite
  }
  // 秒
  if(second_now != second_old){
    second_old = second_now;
    clk.createSprite(40, 32);
    clk.fillSprite(TFT_WHITE);

    clk.loadFont(FxLED_32);                   // 加载字体
    clk.setTextDatum(CC_DATUM);
    clk.setTextColor(TFT_BLACK, TFT_WHITE);
    clk.drawString(second_now, 20, 16);

    clk.unloadFont();                         // 卸载字体
    clk.pushSprite(170, 60);
    clk.deleteSprite();
  }
  //--------------------中间时间区显示结束--------------------

  //--------------------底部时间区显示开始--------------------
  clk.loadFont(ZdyLwFont_20);           // 加载汉字字体
  // 星期
  if(week_now != week_old){
    week_old = week_now;
    clk.createSprite(56, 30);
    clk.fillSprite(TFT_WHITE);
    clk.setTextDatum(CC_DATUM);
    clk.setTextColor(TFT_BLACK, TFT_WHITE);
    clk.drawString(week_now, 28, 15);     // 周几
    clk.pushSprite(2, 208);
    clk.deleteSprite();
  }
  // 月日
  if(monthDay_now != monthDay_old) {
    monthDay_old = monthDay_now;
    clk.createSprite(98, 30);
    clk.fillSprite(TFT_WHITE);
    clk.setTextDatum(CC_DATUM);
    clk.setTextColor(TFT_BLACK, TFT_WHITE);
    clk.drawString(monthDay_now, 49, 15);  // 几月几日
    clk.pushSprite(61, 208);
    clk.deleteSprite();
  }
  clk.unloadFont();                        // 卸载字体
  //--------------------底部时间区显示结束--------------------
}

// 刷新gif
extern void tft_display_gif(bool isChangeMode) {
  static uint8_t mode = 0;
  static uint8_t index = 0;
  static uint32_t time_old = 0;
  uint8_t x,y,dt;
  uint32_t time_now = 0;

  if(isChangeMode) {
    mode += 1;
    if(mode > 3) mode=1;
    index = 0;
    time_old = 0;
  }

  // 修改动画的播放速度
  switch(mode) {
    case 1:x=80;y=104;dt=40;break;  //动画-龙猫跳绳
    case 2:x=80;y=114;dt=50;break;  //动画-龙猫转圈
    case 3:x=83;y=114;dt=30;break;  //动画-太空人(胖)
  }

  time_now = millis();
  if(time_now - time_old >= dt) {
    index += 1;
    time_old = time_now;
  }
  if(mode == 1) { //动画-龙猫跳绳
    switch(index) {
      case 1:  TJpgDec.drawJpg(x,y,chinchilla_1_0, sizeof(chinchilla_1_0));break;
      case 2:  TJpgDec.drawJpg(x,y,chinchilla_1_1, sizeof(chinchilla_1_1));break;
      case 3:  TJpgDec.drawJpg(x,y,chinchilla_1_2, sizeof(chinchilla_1_2));break;
      case 4:  TJpgDec.drawJpg(x,y,chinchilla_1_3, sizeof(chinchilla_1_3));break;
      case 5:  TJpgDec.drawJpg(x,y,chinchilla_1_4, sizeof(chinchilla_1_4));break;
      case 6:  TJpgDec.drawJpg(x,y,chinchilla_1_5, sizeof(chinchilla_1_5));break;
      case 7:  TJpgDec.drawJpg(x,y,chinchilla_1_6, sizeof(chinchilla_1_6));break;
      case 8:  TJpgDec.drawJpg(x,y,chinchilla_1_7, sizeof(chinchilla_1_7));break;
      case 9:  TJpgDec.drawJpg(x,y,chinchilla_1_8, sizeof(chinchilla_1_8));break;
      case 10: TJpgDec.drawJpg(x,y,chinchilla_1_9, sizeof(chinchilla_1_9));break;
      case 11: TJpgDec.drawJpg(x,y,chinchilla_1_10, sizeof(chinchilla_1_10));break;
      case 12: TJpgDec.drawJpg(x,y,chinchilla_1_11, sizeof(chinchilla_1_11));break;
      case 13: TJpgDec.drawJpg(x,y,chinchilla_1_12, sizeof(chinchilla_1_12));break;
      case 14: TJpgDec.drawJpg(x,y,chinchilla_1_13, sizeof(chinchilla_1_13));break;
      case 15: TJpgDec.drawJpg(x,y,chinchilla_1_14, sizeof(chinchilla_1_14));break;
      case 16: TJpgDec.drawJpg(x,y,chinchilla_1_15, sizeof(chinchilla_1_15));break;
      case 17: TJpgDec.drawJpg(x,y,chinchilla_1_16, sizeof(chinchilla_1_16));break;
      case 18: TJpgDec.drawJpg(x,y,chinchilla_1_17, sizeof(chinchilla_1_17));break;
      case 19: TJpgDec.drawJpg(x,y,chinchilla_1_18, sizeof(chinchilla_1_18));break;
      case 20: TJpgDec.drawJpg(x,y,chinchilla_1_19, sizeof(chinchilla_1_19));break;
      case 21: TJpgDec.drawJpg(x,y,chinchilla_1_20, sizeof(chinchilla_1_20));break;
      case 22: TJpgDec.drawJpg(x,y,chinchilla_1_21, sizeof(chinchilla_1_21));break;
      case 23: TJpgDec.drawJpg(x,y,chinchilla_1_22, sizeof(chinchilla_1_22));break;
      case 24: TJpgDec.drawJpg(x,y,chinchilla_1_23, sizeof(chinchilla_1_23));break;
      case 25: TJpgDec.drawJpg(x,y,chinchilla_1_24, sizeof(chinchilla_1_24));break;
      case 26: TJpgDec.drawJpg(x,y,chinchilla_1_25, sizeof(chinchilla_1_25));break;
      case 27: TJpgDec.drawJpg(x,y,chinchilla_1_26, sizeof(chinchilla_1_26));break;
      case 28: TJpgDec.drawJpg(x,y,chinchilla_1_27, sizeof(chinchilla_1_27));break;
      case 29: TJpgDec.drawJpg(x,y,chinchilla_1_28, sizeof(chinchilla_1_28));break;
      case 30: TJpgDec.drawJpg(x,y,chinchilla_1_29, sizeof(chinchilla_1_29));break;
      case 31: TJpgDec.drawJpg(x,y,chinchilla_1_30, sizeof(chinchilla_1_30));break;
      case 32: TJpgDec.drawJpg(x,y,chinchilla_1_31, sizeof(chinchilla_1_31));break;
      case 33: TJpgDec.drawJpg(x,y,chinchilla_1_32, sizeof(chinchilla_1_32));break;
      case 34: TJpgDec.drawJpg(x,y,chinchilla_1_33, sizeof(chinchilla_1_33));break;
      case 35: TJpgDec.drawJpg(x,y,chinchilla_1_34, sizeof(chinchilla_1_34));break;
      case 36: TJpgDec.drawJpg(x,y,chinchilla_1_35, sizeof(chinchilla_1_35));break;
      case 37: TJpgDec.drawJpg(x,y,chinchilla_1_36, sizeof(chinchilla_1_36));break;
      case 38: TJpgDec.drawJpg(x,y,chinchilla_1_37, sizeof(chinchilla_1_37));break;
      case 39: TJpgDec.drawJpg(x,y,chinchilla_1_38, sizeof(chinchilla_1_38));break;
      case 40: TJpgDec.drawJpg(x,y,chinchilla_1_39, sizeof(chinchilla_1_39));index=0;break;
    }
  } else if(mode == 2) { //动画-龙猫转圈
    switch(index) {
      case 1:  TJpgDec.drawJpg(x,y,chinchilla_2_0, sizeof(chinchilla_2_0));break;
      case 2:  TJpgDec.drawJpg(x,y,chinchilla_2_1, sizeof(chinchilla_2_1));break;
      case 3:  TJpgDec.drawJpg(x,y,chinchilla_2_2, sizeof(chinchilla_2_2));break;
      case 4:  TJpgDec.drawJpg(x,y,chinchilla_2_3, sizeof(chinchilla_2_3));break;
      case 5:  TJpgDec.drawJpg(x,y,chinchilla_2_4, sizeof(chinchilla_2_4));break;
      case 6:  TJpgDec.drawJpg(x,y,chinchilla_2_5, sizeof(chinchilla_2_5));break;
      case 7:  TJpgDec.drawJpg(x,y,chinchilla_2_6, sizeof(chinchilla_2_6));break;
      case 8:  TJpgDec.drawJpg(x,y,chinchilla_2_7, sizeof(chinchilla_2_7));break;
      case 9:  TJpgDec.drawJpg(x,y,chinchilla_2_8, sizeof(chinchilla_2_8));break;
      case 10: TJpgDec.drawJpg(x,y,chinchilla_2_9, sizeof(chinchilla_2_9));break;
      case 11: TJpgDec.drawJpg(x,y,chinchilla_2_10, sizeof(chinchilla_2_10));break;
      case 12: TJpgDec.drawJpg(x,y,chinchilla_2_11, sizeof(chinchilla_2_11));break;
      case 13: TJpgDec.drawJpg(x,y,chinchilla_2_12, sizeof(chinchilla_2_12));break;
      case 14: TJpgDec.drawJpg(x,y,chinchilla_2_13, sizeof(chinchilla_2_13));break;
      case 15: TJpgDec.drawJpg(x,y,chinchilla_2_14, sizeof(chinchilla_2_14));break;
      case 16: TJpgDec.drawJpg(x,y,chinchilla_2_15, sizeof(chinchilla_2_15));break;
      case 17: TJpgDec.drawJpg(x,y,chinchilla_2_16, sizeof(chinchilla_2_16));break;
      case 18: TJpgDec.drawJpg(x,y,chinchilla_2_17, sizeof(chinchilla_2_17));break;
      case 19: TJpgDec.drawJpg(x,y,chinchilla_2_18, sizeof(chinchilla_2_18));break;
      case 20: TJpgDec.drawJpg(x,y,chinchilla_2_19, sizeof(chinchilla_2_19));break;
      case 21: TJpgDec.drawJpg(x,y,chinchilla_2_20, sizeof(chinchilla_2_20));break;
      case 22: TJpgDec.drawJpg(x,y,chinchilla_2_21, sizeof(chinchilla_2_21));break;
      case 23: TJpgDec.drawJpg(x,y,chinchilla_2_22, sizeof(chinchilla_2_22));break;
      case 24: TJpgDec.drawJpg(x,y,chinchilla_2_23, sizeof(chinchilla_2_23));break;
      case 25: TJpgDec.drawJpg(x,y,chinchilla_2_24, sizeof(chinchilla_2_24));break;
      case 26: TJpgDec.drawJpg(x,y,chinchilla_2_25, sizeof(chinchilla_2_25));break;
      case 27: TJpgDec.drawJpg(x,y,chinchilla_2_26, sizeof(chinchilla_2_26));break;
      case 28: TJpgDec.drawJpg(x,y,chinchilla_2_27, sizeof(chinchilla_2_27));break;
      case 29: TJpgDec.drawJpg(x,y,chinchilla_2_28, sizeof(chinchilla_2_28));break;
      case 30: TJpgDec.drawJpg(x,y,chinchilla_2_29, sizeof(chinchilla_2_29));break;
      case 31: TJpgDec.drawJpg(x,y,chinchilla_2_30, sizeof(chinchilla_2_30));break;
      case 32: TJpgDec.drawJpg(x,y,chinchilla_2_31, sizeof(chinchilla_2_31));break;
      case 33: TJpgDec.drawJpg(x,y,chinchilla_2_32, sizeof(chinchilla_2_32));break;
      case 34: TJpgDec.drawJpg(x,y,chinchilla_2_33, sizeof(chinchilla_2_33));break;
      case 35: TJpgDec.drawJpg(x,y,chinchilla_2_34, sizeof(chinchilla_2_34));break;
      case 36: TJpgDec.drawJpg(x,y,chinchilla_2_35, sizeof(chinchilla_2_35));break;
      case 37: TJpgDec.drawJpg(x,y,chinchilla_2_36, sizeof(chinchilla_2_36));break;
      case 38: TJpgDec.drawJpg(x,y,chinchilla_2_37, sizeof(chinchilla_2_37));break;
      case 39: TJpgDec.drawJpg(x,y,chinchilla_2_38, sizeof(chinchilla_2_38));break;
      case 40: TJpgDec.drawJpg(x,y,chinchilla_2_39, sizeof(chinchilla_2_39));break;
      case 41: TJpgDec.drawJpg(x,y,chinchilla_2_40, sizeof(chinchilla_2_40));break;
      case 42: TJpgDec.drawJpg(x,y,chinchilla_2_41, sizeof(chinchilla_2_41));break;
      case 43: TJpgDec.drawJpg(x,y,chinchilla_2_42, sizeof(chinchilla_2_42));break;
      case 44: TJpgDec.drawJpg(x,y,chinchilla_2_43, sizeof(chinchilla_2_43));break;
      case 45: TJpgDec.drawJpg(x,y,chinchilla_2_44, sizeof(chinchilla_2_44));break;
      case 46: TJpgDec.drawJpg(x,y,chinchilla_2_45, sizeof(chinchilla_2_45));break;
      case 47: TJpgDec.drawJpg(x,y,chinchilla_2_46, sizeof(chinchilla_2_46));break;
      case 48: TJpgDec.drawJpg(x,y,chinchilla_2_47, sizeof(chinchilla_2_47));break;
      case 49: TJpgDec.drawJpg(x,y,chinchilla_2_48, sizeof(chinchilla_2_48));break;
      case 50: TJpgDec.drawJpg(x,y,chinchilla_2_49, sizeof(chinchilla_2_49));break;
      case 51: TJpgDec.drawJpg(x,y,chinchilla_2_50, sizeof(chinchilla_2_50));break;
      case 52: TJpgDec.drawJpg(x,y,chinchilla_2_51, sizeof(chinchilla_2_51));break;
      case 53: TJpgDec.drawJpg(x,y,chinchilla_2_52, sizeof(chinchilla_2_52));break;
      case 54: TJpgDec.drawJpg(x,y,chinchilla_2_53, sizeof(chinchilla_2_53));break;
      case 55: TJpgDec.drawJpg(x,y,chinchilla_2_54, sizeof(chinchilla_2_54));break;
      case 56: TJpgDec.drawJpg(x,y,chinchilla_2_55, sizeof(chinchilla_2_55));break;
      case 57: TJpgDec.drawJpg(x,y,chinchilla_2_56, sizeof(chinchilla_2_56));break;
      case 58: TJpgDec.drawJpg(x,y,chinchilla_2_57, sizeof(chinchilla_2_57));break;
      case 59: TJpgDec.drawJpg(x,y,chinchilla_2_58, sizeof(chinchilla_2_58));break;
      case 60: TJpgDec.drawJpg(x,y,chinchilla_2_59, sizeof(chinchilla_2_59));break;
      case 61: TJpgDec.drawJpg(x,y,chinchilla_2_60, sizeof(chinchilla_2_60));break;
      case 62: TJpgDec.drawJpg(x,y,chinchilla_2_61, sizeof(chinchilla_2_61));break;
      case 63: TJpgDec.drawJpg(x,y,chinchilla_2_62, sizeof(chinchilla_2_62));break;
      case 64: TJpgDec.drawJpg(x,y,chinchilla_2_63, sizeof(chinchilla_2_63));break;
      case 65: TJpgDec.drawJpg(x,y,chinchilla_2_64, sizeof(chinchilla_2_64));break;
      case 66: TJpgDec.drawJpg(x,y,chinchilla_2_65, sizeof(chinchilla_2_65));break;
      case 67: TJpgDec.drawJpg(x,y,chinchilla_2_66, sizeof(chinchilla_2_66));break;
      case 68: TJpgDec.drawJpg(x,y,chinchilla_2_67, sizeof(chinchilla_2_67));break;
      case 69: TJpgDec.drawJpg(x,y,chinchilla_2_68, sizeof(chinchilla_2_68));break;
      case 70: TJpgDec.drawJpg(x,y,chinchilla_2_69, sizeof(chinchilla_2_69));break;
      case 71: TJpgDec.drawJpg(x,y,chinchilla_2_70, sizeof(chinchilla_2_70));break;
      case 72: TJpgDec.drawJpg(x,y,chinchilla_2_71, sizeof(chinchilla_2_71));break;
      case 73: TJpgDec.drawJpg(x,y,chinchilla_2_72, sizeof(chinchilla_2_72));break;
      case 74: TJpgDec.drawJpg(x,y,chinchilla_2_73, sizeof(chinchilla_2_73));break;
      case 75: TJpgDec.drawJpg(x,y,chinchilla_2_74, sizeof(chinchilla_2_74));break;
      case 76: TJpgDec.drawJpg(x,y,chinchilla_2_75, sizeof(chinchilla_2_75));break;
      case 77: TJpgDec.drawJpg(x,y,chinchilla_2_76, sizeof(chinchilla_2_76));break;
      case 78: TJpgDec.drawJpg(x,y,chinchilla_2_77, sizeof(chinchilla_2_77));break;
      case 79: TJpgDec.drawJpg(x,y,chinchilla_2_78, sizeof(chinchilla_2_78));break;
      case 80: TJpgDec.drawJpg(x,y,chinchilla_2_79, sizeof(chinchilla_2_79));index=0;break;
    }
  } else if(mode == 3) { //动画-太空人
    switch(index) {
      case 1:  TJpgDec.drawJpg(x,y,Astronaut_1_0, sizeof(Astronaut_1_0));break;
      case 2:  TJpgDec.drawJpg(x,y,Astronaut_1_1, sizeof(Astronaut_1_1));break;
      case 3:  TJpgDec.drawJpg(x,y,Astronaut_1_2, sizeof(Astronaut_1_2));break;
      case 4:  TJpgDec.drawJpg(x,y,Astronaut_1_3, sizeof(Astronaut_1_3));break;
      case 5:  TJpgDec.drawJpg(x,y,Astronaut_1_4, sizeof(Astronaut_1_4));break;
      case 6:  TJpgDec.drawJpg(x,y,Astronaut_1_5, sizeof(Astronaut_1_5));break;
      case 7:  TJpgDec.drawJpg(x,y,Astronaut_1_6, sizeof(Astronaut_1_6));break;
      case 8:  TJpgDec.drawJpg(x,y,Astronaut_1_7, sizeof(Astronaut_1_7));break;
      case 9:  TJpgDec.drawJpg(x,y,Astronaut_1_8, sizeof(Astronaut_1_8));break;
      case 10: TJpgDec.drawJpg(x,y,Astronaut_1_9, sizeof(Astronaut_1_9));index=0;break;
    }
  } else{
    mode = 0;
    index = 0;
    time_old = 0;
  }
}

String scrollText[6];
// 天气信息写到屏幕上
extern void tft_display_weather(String *cityDZ, String *dataSK, String *dataFC)
{
  DynamicJsonDocument doc(1024);
  deserializeJson(doc, *dataSK);
  JsonObject sk = doc.as<JsonObject>();

  /***绘制相关文字***/
  clk.setColorDepth(8);
  clk.loadFont(ZdyLwFont_20);  // 加载汉字字体

  // 温度
  clk.createSprite(52, 30);    // 创建Sprite
  clk.fillSprite(TFT_WHITE);   // 填充颜色
  clk.setTextDatum(CC_DATUM);  //  显示对齐方式
  clk.setTextColor(TFT_BLACK, TFT_WHITE); // 文本的前景色和背景色
  clk.drawString(sk["temp"].as<String>() + "℃", 26, 15); // 显示文本
  clk.pushSprite(184, 208);    // Sprite中内容一次推向屏幕
  clk.deleteSprite();          // 删除Sprite

  // 城市名称
  clk.createSprite(84, 30);
  clk.fillSprite(TFT_WHITE);
  clk.setTextDatum(CC_DATUM);
  clk.setTextColor(TFT_BLACK, TFT_WHITE);
  clk.drawString(sk["cityname"].as<String>(), 42, 15);
  clk.pushSprite(151, 1);
  clk.deleteSprite();

  // PM2.5空气指数
  uint16_t pm25TFT_COLOR = tft.color565(156, 202, 127); // 优
  String aqiTxt = "优";
  int pm25V = sk["aqi"];
  if (pm25V > 200){
    pm25TFT_COLOR = tft.color565(136, 11, 32);          // 重度
    aqiTxt = "重度";
  }else if (pm25V > 150){
    pm25TFT_COLOR = tft.color565(186, 55, 121);         // 中度
    aqiTxt = "中度";
  }else if (pm25V > 100){
    pm25TFT_COLOR = tft.color565(242, 159, 57);         // 轻
    aqiTxt = "轻度";
  }else if (pm25V > 50){
    pm25TFT_COLOR = tft.color565(247, 219, 100);        // 良
    aqiTxt = "良";
  }
  // 先绘制背景颜色
  clk.createSprite(50, 24);
  clk.fillSprite(TFT_WHITE);
  clk.fillRoundRect(0, 0, 50, 24, 4, pm25TFT_COLOR);
  // 再绘制文本
  clk.setTextDatum(CC_DATUM);
  clk.setTextColor(TFT_WHITE);
  clk.drawString(aqiTxt, 25, 13);
  clk.pushSprite(5, 150);
  clk.deleteSprite();

  // 湿度
  clk.createSprite(56, 24);
  clk.fillSprite(TFT_WHITE);
  clk.setTextDatum(CC_DATUM);
  clk.setTextColor(TFT_BLACK, TFT_WHITE);
  clk.drawString(sk["SD"].as<String>(), 28, 13);
  clk.pushSprite(185, 150);
  clk.deleteSprite();

  scrollText[0] = "实时天气 " + sk["weather"].as<String>();
  scrollText[1] = "空气质量 " + aqiTxt;
  scrollText[2] = "风向 " + sk["WD"].as<String>() + sk["WS"].as<String>();

  // 左上角滚动字幕
  // 解析第二段JSON
  deserializeJson(doc, *cityDZ);
  JsonObject dz = doc.as<JsonObject>();
  //Serial.println(sk["ws"].as<String>());
  //横向滚动方式
  //String aa = "今日天气:" + dz["weather"].as<String>() + ",温度:最低" + dz["tempn"].as<String>() + ",最高" + dz["temp"].as<String>() + " 空气质量:" + aqiTxt + ",风向:" + dz["wd"].as<String>() + dz["ws"].as<String>();
  //scrollTextWidth = clk.textWidth(scrollText);
  //Serial.println(aa);
  scrollText[3] = "今日" + dz["weather"].as<String>();

  deserializeJson(doc, *dataFC);
  JsonObject fc = doc.as<JsonObject>();

  scrollText[4] = "最低温度" + fc["fd"].as<String>() + "℃";
  scrollText[5] = "最高温度" + fc["fc"].as<String>() + "℃";

  //Serial.println(scrollText[0]);

  clk.unloadFont();
}

int currentIndex = 0;
int prevTime = 0;
TFT_eSprite clkb = TFT_eSprite(&tft);

// 天气滚动条显示
static void scrollTxt(int pos)
{
  clkb.createSprite(148, 24);
  clkb.fillSprite(TFT_WHITE);
  clkb.setTextWrap(false);
  clkb.setTextDatum(CC_DATUM);
  clkb.setTextColor(TFT_BLACK, TFT_WHITE);
  clkb.drawString(scrollText[currentIndex], 74, pos + 12);
  clkb.pushSprite(2, 4);
}

extern void tft_display_banner(void){
  if (scrollText[currentIndex]){
    clkb.setColorDepth(8);
    clkb.loadFont(ZdyLwFont_20);

    for (int pos = 24; pos > 0; pos--){
      scrollTxt(pos);
    }

    clkb.deleteSprite();
    clkb.unloadFont();

    if (currentIndex >= 5){
      currentIndex = 0; //回第一个
    } else {
      currentIndex += 1; //准备切换到下一个
    }
  }
}

2.4 睡眠模式

#define TFT_COMMAND_HWRESET                      0x61  //tft command: HWRESET(61h): Hardeware Reset
#define TFT_COMMAND_SWRESET                      0x01  //tft command: SWRESET(01h): Software Reset
#define TFT_COMMAND_SLPIN                        0x10  //tft command: SLPIN(10h): Sleep In mode
#define TFT_COMMAND_DLPOFFSAVE                   0xBD  //tft command: DLPOFFSAVE (BDh): Display off power save
#define TFT_COMMANDDATA_DOFSAVE                  0x00  //tft command data: Power save for display off mode. When DOFSAVE=0, power consumption in display off mode will be saved.
#define TFT_COMMAND_DELAY                          10  //delay 10ms for next command

//打开显示
static void tft_display_reset(void){
  tft.writecommand(TFT_COMMAND_HWRESET);//Hardeware Reset
  delayMicroseconds(TFT_COMMAND_DELAY);

  tft.writecommand(TFT_COMMAND_SWRESET);//Software Reset
  delayMicroseconds(TFT_COMMAND_DELAY);
}

//关闭显示
static void tft_display_off(void){
  tft.writecommand(TFT_COMMAND_SLPIN); //tft 设置为 Sleep In mode
  delayMicroseconds(TFT_COMMAND_DELAY);

  tft.writecommand(TFT_COMMAND_DLPOFFSAVE); //tft 设置为 Display off power save
  delayMicroseconds(TFT_COMMAND_DELAY);
  tft.writedata(TFT_COMMANDDATA_DOFSAVE);
  delayMicroseconds(TFT_COMMAND_DELAY);
}

#define uS_TO_S_FACTOR 1000000  /* Conversion factor for micro seconds to seconds */
#define TIME_TO_SLEEP  5        /* Time ESP32 will go to sleep (in seconds) */

extern void print_wakeup_reason(){
  esp_sleep_wakeup_cause_t wakeup_reason;

  wakeup_reason = esp_sleep_get_wakeup_cause();

  switch(wakeup_reason)
  {
    case ESP_SLEEP_WAKEUP_EXT0 : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
    case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
    case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
    case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
    case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
    default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;
  }
}

// 系统休眠
extern void esp_sleep(unsigned int minutes){
  tft_display_off(); //关闭显示

  if (minutes > 70) minutes = 70;
  uint32_t timeOut = minutes * 60 * 1000000;
  Serial.println(timeOut);
  esp_sleep_enable_timer_wakeup(timeOut);// 定时时间,单位μ秒, 类型uint64_t, 所以定时时间要在584942年以内
  Serial.println("进入睡眠模式");
  Serial.print("时间睡眠(分钟):");
  Serial.println(minutes);
  esp_deep_sleep_start();
}

RTC_DATA_ATTR int RTC_sleep_count_night = 0;  // 20-8点不更新

//夜间休眠, 0-自动,1-立即
extern void sleep_at_night(unsigned int type){
  //立即休眠
  if (type == 1){
    Serial.println("need sleep");
    RTC_sleep_count_night = 1;
    esp_sleep(SLEEP_TIME_NIGHT);
    return;
  }

  //自动判断是否休眠
  Serial.printf("RTC_sleep_count_night: %d\n", RTC_sleep_count_night);
  // 继续休眠
  if (RTC_sleep_count_night < SLEEP_COUNT_NIGHT_MAX){
    Serial.println("auto sleep");
    ++RTC_sleep_count_night;
    esp_sleep(SLEEP_TIME_NIGHT);
    return;
  }

  Serial.println("weak up");
  //不休眠则点亮屏幕
  tft_display_reset();
}

2.5 获取天气信息

//获取城市代码
extern void getCityCode(void)
{
  String URL = "http://wgeo.weather.com.cn/ip/?_=" + String(now());
  //创建 HTTPClient 对象
  HTTPClient httpClient;
  //配置请求地址。此处也可以不使用端口号和PATH而单纯的
  httpClient.begin(URL);
  //设置请求头中的User-Agent
  httpClient.setUserAgent("Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A372 Safari/604.1");
  // 不加这一句拿不到对应编号 感觉这里是特意处理了 不建议一直调用
  httpClient.addHeader("Referer", "http://www.weather.com.cn/");

  //启动连接并发送HTTP请求
  int httpCode = httpClient.GET();
  Serial.print("Send GET request to URL: ");
  Serial.println(URL);
  //如果服务器响应OK则从服务器获取响应体信息并通过串口输出
  if (httpCode == HTTP_CODE_OK){
    String str = httpClient.getString();
    Serial.print("Get Response: ");
    Serial.println(str);
    int aa = str.indexOf("id=");
    if (aa > -1){
      //cityCode = str.substring(aa+4,aa+4+9).toInt();
      cityCode = str.substring(aa + 4, aa + 4 + 9);
      Serial.println(cityCode);
    }else{
      Serial.println("获取城市代码失败");
    }
  } else {
    Serial.println("请求城市代码错误:");
    Serial.println(httpCode);
  }
  //关闭与服务器连接
  httpClient.end();
}


// 获取城市天气
extern void getCityWeather(void){
  String URL = "http://d1.weather.com.cn/weather_index/" + cityCode + ".html?_=" + String(now());
  //创建 HTTPClient 对象
  HTTPClient httpClient;
  httpClient.begin(URL);
  //设置请求头中的User-Agent
  httpClient.setUserAgent("Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A372 Safari/604.1");
  httpClient.addHeader("Referer", "http://www.weather.com.cn/");
  //启动连接并发送HTTP请求
  int httpCode = httpClient.GET();
  Serial.println("正在获取天气数据");
  Serial.println(URL);
  //如果服务器响应OK则从服务器获取响应体信息并通过串口输出
  if (httpCode == HTTP_CODE_OK){
    String str = httpClient.getString();
    int indexStart = str.indexOf("weatherinfo\":");
    int indexEnd = str.indexOf("};var alarmDZ");

    String jsonCityDZ = str.substring(indexStart + 13, indexEnd);
    Serial.println(jsonCityDZ);

    indexStart = str.indexOf("dataSK =");
    indexEnd = str.indexOf(";var dataZS");
    String jsonDataSK = str.substring(indexStart + 8, indexEnd);
    Serial.println(jsonDataSK);

    indexStart = str.indexOf("\"f\":[");
    indexEnd = str.indexOf(",{\"fa");
    String jsonFC = str.substring(indexStart + 5, indexEnd);
    Serial.println(jsonFC);

    tft_display_weather(&jsonCityDZ, &jsonDataSK, &jsonFC);
    Serial.println("获取成功");
  }else{
    Serial.println("请求城市天气错误:");
    Serial.print(httpCode);
  }
  //关闭与服务器连接
  httpClient.end();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1119201.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

「2021年TYWZ普及模拟题」多边形 待定题解

文章目录 题目描述输入格式输出格式样例样例输入 1样例输出 1样例输入 2样例输出 2 数据范围与提示前置知识思路与部分实现完整代码文章小结 题目描述 一个凸多边形具有非常多优秀的性质&#xff0c;它的任意内角小于或等于 18 0 。 180^。 180。 。 小 F 将 n n n 条边交给…

Linux内存管理(1):memblock

一、memblock分配器初始化 在内核初始化过程中也需要分配内存,使用的页帧分配器叫memblock(早期的内核版本使用BootMem,新版本内核已不再用)。 memblock是系统启动过程中的一个中间阶段的内存管理, 负责在系统上电到内核内存管理模型初始化之前这段时间的物理内存分配、预留…

微信小程序之授权登录以及授权登录流程讲解

前言&#xff1a; 之前博主给大家介绍了小程序的授权登录案例&#xff0c;今天我使用结合项目&#xff0c;后台的方式来给大家展示 一&#xff0c;微信授权登录流程 步骤流程&#xff1a; 1.小程序调用wx.login() 获取 临时登录凭证code &#xff0c;并回传到开发者服务器 2.开…

解决CondaHTTPError HTTP 000 CONNECTION FAILED for url解决方法

解决CondaHTTPError: HTTP 000 CONNECTION FAILED for url解决方法 问题&#xff1a;使用conda install命令安装包提示CondaHTTPError: HTTP 000 CONNECTION FAILED for url 分析&#xff1a;网络连接问题&#xff0c;大概率是网速不行或者源没有换 解决方案&#xff1a;修改国…

华为eNSP配置专题-OSPF路由协议的配置

文章目录 华为eNSP配置专题-OSPF路由协议的配置0、概要介绍1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、终端构成和连接2.2、终端的基本配置 3、OSPF路由的配置3.1、OSPF路由的配置3.1.1、在R1上配置OSPF3.1.2、在R2和R3上配置OSPF3.1.3、查看和监控OSPF 华为e…

Java,输出一个10行的杨辉三角

据图可以发现&#xff0c;杨辉三角是每行的首元素和末元素都为1&#xff0c;中间的元素都是等于它上面的元素加上左上角的元素。 首先&#xff0c;先完成二数组的创建和初始化&#xff0c;第一行的长度为一&#xff0c;第二行的长度为二……以此类推。所以&#xff0c;外元素的…

抖音热搜榜:引领潮流,展现自我

在信息爆炸的时代&#xff0c;人们追求快速、碎片化的信息获取方式&#xff0c;而短视频平台正是满足了这一需求。抖音作为其中的佼佼者&#xff0c;以其独特的魅力吸引了越来越多的用户。每天&#xff0c;数以亿计的用户在抖音上创作、分享、浏览各种短视频&#xff0c;形成了…

【数据结构】【C语言】【环形链表约瑟夫问题】

1.问题描述及背景&#xff1a; 著名的Josephus问题 据说著名犹太 历史学家 Josephus有过以下的故事&#xff1a;在罗⻢⼈占领乔塔帕特后&#xff0c;39 个犹太⼈与 Josephus及他的朋友躲到⼀个洞中&#xff0c;39个犹太⼈决定宁愿死也不要被⼈抓到&#xff0c;于是决定了⼀个⾃…

阿里8年经验之谈 —— pytest接口自动化测试框架搭建!

一. 背景 Pytest目前已经成为Python系自动化测试必学必备的一个框架&#xff0c;网上也有很多的文章讲述相关的知识。最近自己也抽时间梳理了一份pytest接口自动化测试框架&#xff0c;因此准备写文章记录一下&#xff0c;做到尽量简单通俗易懂&#xff0c;当然前提是基本的py…

C++:类的默认成员函数------构造函数析构函数(超详细解析,小白一看就懂!)

目录 一、前言 二、为什么会出现构造函数和析构函数 三、构造函数 &#x1f34e;构造函数的概念 &#x1f350;构造函数特性 &#x1f4a6;解释特性3&#xff1a;对象实例化时编译器自动调用对应的构造函数 &#x1f4a6;解释特性4&#xff1a;构造函数支持重载 &…

进阶JAVA篇- Collcetions 工具类与集合的并发修改异常问题

目录 1.0 集合的并发修改问题 1.1 如何解决集合的并发修改问题 2.0 Collcetions 工具类的说明 1.0 集合的并发修改问题 我们可以简单的认为&#xff0c;就是使用迭代器遍历集合时&#xff0c;又同时在删除集合中的数据&#xff0c;程序就会出现并发修改异常的错误。 代码如下&…

linux性能分析(五)CPU篇(一)基础

一 CPU篇 遗留&#xff1a; 负载与cpu关系、负载与线程的关系? ① CPU 相关概念 1、physical 物理CPU个数 --> 一般一个实体 2、cpu 核数 3、逻辑CPU个数 逻辑核 4、超线程 super thread 技术 5、各种cpu的计算方式物理 physical CPU的个数&#xff1a; physical id逻…

【Javascript】创建对象的几种方式

通过字面量创建对象 通过构造函数创建对象 Object()-------------构造函数 通过构造函数来实例化对象 给person注入属性 Factory工厂 this指向的是对象的本身使⽤new 实例化⼀个对象&#xff0c;就像⼯⼚⼀样

5G学习笔记之5G频谱

参考&#xff1a;《5G NR通信标准》1. 5G频谱 1G和2G移动业务的频段主要在800MHz~900MHz&#xff0c;存在少数在更高或者更低频段&#xff1b;3G和4G的频段主要在450MHz ~ 6GHz&#xff1b;5G主要是410MHz ~ 6GHz&#xff0c;以及24GHz ~ 52GHz。 5G频谱跨度较大&#xff0c;可…

TCP为什么需要三次握手和四次挥手?

一、三次握手 三次握手&#xff08;Three-way Handshake&#xff09;其实就是指建立一个TCP连接时&#xff0c;需要客户端和服务器总共发送3个包 主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备 过程如下&#xff…

laravel 中 npm run 同时执行多个命令

在使用laravel 启动项目时 经常需要同时运行两个命令。 1.前端既是 npm run dev 2.后端php则是 php artisan serve 可以安装 使用 concurrently 进行并行启动 concurrently - npm npm install concurrently --save 之后修改 package.json 在 scripts 中增加 &#xff08;多条…

shell算术运算符

文章目录 算术运算符&#xff1a;算术运算扩展算术运算指令expr算术运算指令let自增自减运算符 算术运算符&#xff1a; 加法 - 减法 * 乘法 / 除法 % 取余 ** 幂运算算术运算扩展 算术运算扩展的运算数只能是整数 [rootlocalhost tmp]# num1$[41] [rootlocalhost tmp]# echo …

软件测试肖sir__python之ui自动化测试框架unittest

ui自动化测试框架unittest 一、自动化框架 1、自动化框架类型 &#xff08;1&#xff09;unittest框架 &#xff08;python中自带框架&#xff09; &#xff08;2&#xff09;pytest框架 &#xff08;第三方库&#xff09; &#xff08;3&#xff09;po框架 &#xff08;分层思…

10.一篇文章带你理解及使用CSS(前端邪术-化妆术)

文章目录 1. CSS 是什么2.基本语法规范3.引入方式3.1内部样式表3.2行内样式表3.3外部样式 4.代码风格4.1样式格式4.2样式大小写4.3空格规范 5.选择器5.1选择器的功能5.2选择器的种类5.3基础选择器5.3.1标签选择器5.3.2类选择器5.3.3 id 选择器5.3.4通配符选择器5.3.5基础选择器…

pytest自动化测试数据驱动yaml/excel/csv/json

这篇文章主要为大家介绍了pytest自动化测试数据驱动yaml/excel/csv/json的示例详解&#xff0c;有需要的朋友可以借鉴参考下。− 数据驱动 数据的改变从而驱动自动化测试用例的执行&#xff0c;最终引起测试结果的改变。简单说就是参数化的应用。 测试驱动在自动化测试中的应…