Pytorch深度学习 - 学习笔记

news2024/10/7 2:15:58

文章目录

  • Pytorch深度学习
  • 1. Pytorch加载数据初认识
  • 2. TensorBoard
  • 3. Transforms
    • 常见的transform
  • 4. torchvision中的数据集使用
  • 5. DataLoader使用
  • 6. 神经网络
    • 6.1 神经网络的基本骨架
    • 6.2 卷积层
    • 6.3 最大池化的使用
    • 6.4 非线性激活
    • 6.5 线性层及其他层
    • 6.6 小实战及Sequential
  • 7. 损失函数与反向传播
  • 8. 优化器
  • 9. 现有网络模型的使用
  • 10. 网络模型的保存与读取
  • 11. 完整的模型训练套路
  • 12. 利用GPU训练
  • 13. 完整的模型验证套路

Pytorch深度学习

在这里插入图片描述

dir():打开,看见包含什么

help():说明书

import torch
print(dir(torch))
# ['AVG', 'AggregationType', 'AliasDb', ...]

print(dir(torch.tensor))
# ['__call__', '__class__', '__delattr__', '__dir__', '__doc__',...]

1. Pytorch加载数据初认识

pytorch中读取数据主要涉及到两个类DatasetDataloader

Dataset可以将可以使用的数据提取出来,并且可以对数据完成编号。即提供一种方式获取数据及其对应真实的label值。

Dataloader为网络提供不同的数据形式。

Dataset

Dataset是一个抽象类。所有数据集都应该继承Dataset,所有子类都应该重写__getitem__方法,该方法获取每个数据及其对应的label。我们可以选择重写Dataset的__len__方法

  • 如何获取每一个数据及其label

  • 告诉我们总共有多少数据

下载数据集hymenoptera_data。

image-20231015140759597 image-20231015140823426

Dataset测试

from torch.utils.data import Dataset
from PIL import Image
import os

# 创建MyData类,继承Dataset  Dataset是一个抽象类
# 所有数据集都应该继承Dataset,所有子类都应该重写__getitem__方法,该方法获取每个数据及其对应的label
# 我们可以选择重写Dataset的__len__方法
class MyData(Dataset):
    def __init__(self,root_dir,label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(self.root_dir,self.label_dir)
        self.image_path_list = os.listdir(self.path)

    # 获取单个图片信息
    def __getitem__(self, index):
        img_name = self.image_path_list[index]
        img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)
        # 读取图片
        img = Image.open(img_item_path)
        label = self.label_dir
        return img,label

    # 获取数据集长度
    def __len__(self):
        return len(self.image_path_list )

if __name__ == '__main__':
    ants_dataset_train = MyData("data/hymenoptera_data/train","ants")
    ants_dataset_train_len = ants_dataset_train.__len__()
    print(ants_dataset_train_len)
		# 124
    bees_dataset_train = MyData("data/hymenoptera_data/train", "bees")
    bees_dataset_train_len = bees_dataset_train.__len__()
    print(bees_dataset_train_len)
		# 121
    train_dataset = ants_dataset_train + bees_dataset_train
    print(train_dataset.__len__())
		# 245
    img, label = train_dataset.__getitem__(12)
    img.show()  # 展示图片
    print(label)
    # ants

2. TensorBoard

TensorBoard是一个可视化的模块,该模块功能强大,可用于深度学习网络模型训练查看模型结构和训练效果(预测结果、网络模型结构图、准确率、loss曲线、学习率、权重分布等),可以帮我们更好的了解网络模型,设计TensorBoard调用相关代码,以上结果即可保存,是整合资料、梳理模型的好帮手。

安装TensorBoard

pip install tensorboard

首先要导入SummaryWriterl类,直接向log_dir文件夹写入事件文件,可以被Tensorboard进行解析。

add_scalar()方法

'''
参数:
  - tag:相当于title标题
  - scalar_value:需要保存的数值,对应y轴
  - global_step:步数,对应x轴
'''
writer.add_scalar()

测试add_scalar()

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("logs") # 指定一个文件夹,存储事件文件

# 添加标量到summary
'''
参数:
  - tag:相当于title标题
  - scalar_value:需要保存的数值,对应y轴
  - global_step:步数,对应x轴
'''
for i in range(100):
    writer.add_scalar(tag="y=2x+1",scalar_value=2*i+1,global_step=i)

writer.close()

打开生成的文件。在pycharm控制台窗口中,切换到项目目录下,使用命令

tensorboard --logdir=事件文件夹名称

如:
tensorboard --logdir=logs

使用命令,指定端口

tensorboard --logdir=logs --port=端口号
image-20231015153040250

点击链接,打开网页查看结果。

image-20231015153742799

add_image()方法

'''
参数:
  - tag:标题title
  - image_tensor:图像类型 torch.Tensor、numpy.array、string/blobname
  - global_step:步数
'''
writer.add_image()

测试add_image()

因为图片接收的数据为tensor或者numpy型,所以这里我们使用numpy型。

利用numpy.array(),对PIL图片进行转换

from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import numpy as np

writer = SummaryWriter("logs")

img_path = "data/练手数据集/train/ants_image/0013035.jpg"

# Image读入图片
image_PIL = Image.open(img_path)
img_array = np.array(image_PIL)

# 添加图片
'''
参数:
  - tag:标题title
  - image_tensor:图像类型 torch.Tensor、numpy.array、string/blobname
  - global_step:步数
  - dataformats:指定img_tensor值的格式
'''
writer.add_image(tag="Test",img_tensor=img_array,global_step=1,dataformats="HWC")
writer.close()
image-20231015161703045

3. Transforms

Transforms是pytorch的图像处理工具包,是torchvision模块下的一个一个类的集合,可以对图像或数据进行格式变换,裁剪,缩放,旋转等,在进行深度学习项目时用途很广泛。

image-20231015163703337

ToTensor

from torchvision import transforms
from PIL import Image

image_path = "data/hymenoptera_data/train/ants/0013035.jpg"
image_PIL = Image.open(image_path)
# 示例话tensor对象
to_tensor = transforms.ToTensor()
# 调用__call__方法  实现PIL图片对象转为tensor图片对象
image_tensor = to_tensor(image_PIL)
print(image_tensor)

'''
tensor([[[0.3137, 0.3137, 0.3137,  ..., 0.3176, 0.3098, 0.2980],
         [0.3176, 0.3176, 0.3176,  ..., 0.3176, 0.3098, 0.2980],
         [0.3216, 0.3216, 0.3216,  ..., 0.3137, 0.3098, 0.3020],
         ...,
         [0.3412, 0.3412, 0.3373,  ..., 0.1725, 0.3725, 0.3529],
         [0.3412, 0.3412, 0.3373,  ..., 0.3294, 0.3529, 0.3294],
         [0.3412, 0.3412, 0.3373,  ..., 0.3098, 0.3059, 0.3294]],
         ...]]])
'''

常见的transform

关注三个点:输入、输出、作用。

Compose

把几个transforms结合在一起,按顺序执行。Compose()中的参数需要是一个列表。如:

Compose([transforms参数1,transforms参数2,...])

ToPILImage

将tensor或numpy数据类型转为PIL Image类型。

Normalize

归一化。用平均值和标准差对tensor image进行归一化。

归一化计算方式:

output[channel] = (input[channel] - mean[channel]) / std[channel]

测试:

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter

# PIL读取图片
img_PIL = Image.open("data/hymenoptera_data/train/ants/9715481_b3cb4114ff.jpg")

# 将PIL图片转为tensor
to_tensor = transforms.ToTensor()
img_tensor = to_tensor(img_PIL)

# 进行归一化
n = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = n(img_tensor)

writer = SummaryWriter("logs")
writer.add_image(img_tensor=img_tensor,tag="original",global_step=0)
writer.add_image(img_tensor=img_norm,tag="norm",global_step=0)
writer.close()
image-20231015205342161

Resize

将PIL Image重置大小为给定的尺寸。如果size只给了一个数,则我们原图最小的边才会匹配该数值,进行等比的缩放。

测试:

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter


totensor = transforms.ToTensor()
writer = SummaryWriter("logs")

image_PIL = Image.open("data/hymenoptera_data/train/ants/0013035.jpg")
image_tensor_0 = totensor(image_PIL)
writer.add_image(tag="resize",global_step=0,img_tensor=image_tensor_0)

# 定义重置大小
resize = transforms.Resize((512,512))
image_resize = resize(image_PIL)
image_tensor_1 = totensor(image_resize)
writer.add_image(tag="resize",global_step=1,img_tensor=image_tensor_1)

writer.close()
image-20231017091806522

RandomCrop

随机裁剪。

RandomCrop()
'''
参数:
  - size:给定高和宽或只给定一个数值(裁剪为正方形)。
'''

测试:

from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import SummaryWriter

image_PIL = Image.open("data/hymenoptera_data/train/ants/20935278_9190345f6b.jpg")

to_tensor = transforms.ToTensor()

# 定义裁剪
trans_random = transforms.RandomCrop(256)
trans_compose = transforms.Compose([to_tensor,trans_random])

writer = SummaryWriter("logs")

for i in range(10):
    random_img = trans_compose(image_PIL)
    writer.add_image(tag="random",img_tensor=random_img,global_step=i)

writer.close()
image-20231017094510939

4. torchvision中的数据集使用

数据集:

CelebA、CIFAR、Cityscapes、COCO、DatasetFolder、EMNIST、FakeData、Fashion-MNIST、Flickr、HMDB51、ImageFolder、ImageNet、Kinetics-400、KMNIST、LSUN、MNIST、Omniglot、PhotoTour、Places365、QMNIST、SBD、SBU、STL10、SVHN、UCF101、USPS、VOC

需要设定参数:

  • root:数据集的存放位置

  • train:数据集是否为训练集

  • transform: 要对数据集进行什么变化

  • target_transform:对target进行变换

  • download:是否自动下载数据集

测试:

import torchvision.datasets

train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)
print(test_set.classes)
image,target = test_set[0]
print(image)
print(test_set.classes[target])
'''
Files already downloaded and verified
Files already downloaded and verified
['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
<PIL.Image.Image image mode=RGB size=32x32 at 0x1760360A0>
cat
'''
image-20231017100743728

CIFAR-10

包含了60000张32*32对彩色图片,共有10个类别,每个类别有6000张图片。50000张图片为训练集,10000张图片为测试集。

transforms和datasets结合,测试:

import torchvision
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter

to_tensor = transforms.ToTensor()

train_set = torchvision.datasets.CIFAR10(root="./dataset",transform=to_tensor,train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",transform=to_tensor,train=False,download=True)

writer = SummaryWriter("logs")
for i in range(10):
    image_tensor,target = train_set[i]
    writer.add_image(tag="CIFAR10",global_step=i,img_tensor=image_tensor)

writer.close()
image-20231017103116575

5. DataLoader使用

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
           batch_sampler=None, num_workers=0, collate_fn=None,
           pin_memory=False, drop_last=False, timeout=0,
           worker_init_fn=None, *, prefetch_factor=2,
           persistent_workers=False)

'''
datase:自定义的数据集
batch_size:每组数据的数量
shuffle:是否打乱数据
num_workers:加载数据,采用进行的数量。0:采用一个主进程加载数据
drop_list:分组余下的数据是否舍去。如80个数据,分组大小为30,余下20数据无法成为一组,是否舍去
'''

DataLoader会将每个batch中的img和target分别打包

测试:

import torchvision
from torch.utils.data import DataLoader
from torchvision.transforms import transforms

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,download=True,transform=transforms.ToTensor())

# 定义dataloader
test_loader = DataLoader(test_data,shuffle=True,batch_size=4,num_workers=0,drop_last=False)

# 测试数据集中第一张图片及target
img,target = test_data[0]
print(img.shape)
print(target)

for data in test_loader:
    imgs,targets = data
    print(imgs.shape)
    print(targets)
    
'''
torch.Size([3, 32, 32])
3
torch.Size([4, 3, 32, 32])
tensor([7, 0, 8, 7])
torch.Size([4, 3, 32, 32])
tensor([2, 6, 9, 3])
'''

使用tensorboard进行展示

import torchvision
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from torch.utils.tensorboard import SummaryWriter

# 准备的测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,download=True,transform=transforms.ToTensor())

# 定义dataloader
test_loader = DataLoader(test_data,shuffle=True,batch_size=4,num_workers=0,drop_last=False)

writer = SummaryWriter("logs")
i = 0
for data in test_loader:
    imgs,targets = data
    writer.add_images(tag="DataLoader",img_tensor=imgs,global_step=i)
    i = i + 1
writer.close()
image-20231017110524533

6. 神经网络

6.1 神经网络的基本骨架

Torch.NN,(Neural network)。

模块介绍
ModuleBase class for all neural network modules.所有神经网络的基类。
SequentialA sequential container.
ModuleListHolds submodules in a list.
ModuleDictHolds submodules in a dictionary.
ParameterListHolds parameters in a list.
ParameterDictHolds parameters in a dictionary.

前向传播:

image-20231017123502862

定义网络,继承Module类,重写forward方法。官方示例:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

测试:

import torch
from torch import nn

class MyModel(nn.Module):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self,input):
        output = input + 1
        return output

my_model = MyModel()
x = torch.tensor(1.0)
output = my_model(x)
print(output)  # tensor(2.)

6.2 卷积层

卷积层涉及参数:

  • 滑动窗口步长
  • 卷积核尺寸
  • 边缘填充
  • 卷积核个数

特征图尺寸计算:
长度: H 2 = H 1 − F H + 2 P S + 1 宽度: W 2 = W 1 − F W + 2 P S + 1 其中, W 1 、 H 1 表示输入的宽度、长度; W 2 、 H 2 表示输出特征图的宽度、长度; F 表示卷积核长和宽的大小; S 表示滑动窗口的步长; P 表示边界填充(加几圈 0 ) 长度:H_2 = \frac{H_1-F_H+2P}{S}+1 \\ 宽度:W_2 = \frac{W_1-F_W+2P}{S}+1\\ 其中,W_1、H_1表示输入的宽度、长度;W_2、H_2表示输出特征图的宽度、长度;\\ F表示卷积核长和宽的大小;S表示滑动窗口的步长;P表示边界填充(加几圈0) 长度:H2=SH1FH+2P+1宽度:W2=SW1FW+2P+1其中,W1H1表示输入的宽度、长度;W2H2表示输出特征图的宽度、长度;F表示卷积核长和宽的大小;S表示滑动窗口的步长;P表示边界填充(加几圈0
image-20231017132444075

名称介绍
nn.Conv1dApplies a 1D convolution over an input signal composed of several input planes.
nn.Conv2dApplies a 2D convolution over an input signal composed of several input planes.
nn.Conv3dApplies a 3D convolution over an input signal composed of several input planes.
nn.ConvTranspose1dApplies a 1D transposed convolution operator over an input image composed of several input planes.
nn.ConvTranspose2dApplies a 2D transposed convolution operator over an input image composed of several input planes.
nn.ConvTranspose3dApplies a 3D transposed convolution operator over an input image composed of several input planes.
nn.LazyConv1dA torch.nn.Conv1dmodule with lazy initialization of the in_channels argument of the Conv1d that is inferred from the input.size(1).
nn.LazyConv2dA torch.nn.Conv2dmodule with lazy initialization of the in_channels argument of the Conv2d that is inferred from the input.size(1).
nn.LazyConv3dA torch.nn.Conv3dmodule with lazy initialization of the in_channels argument of the Conv3d that is inferred from the input.size(1).
nn.LazyConvTranspose1dA torch.nn.ConvTranspose1d module with lazy initialization of the in_channels argument of the ConvTranspose1d that is inferred from the input.size(1).
nn.LazyConvTranspose2dA torch.nn.ConvTranspose2dmodule with lazy initialization of the in_channels argument of the ConvTranspose2d that is inferred from the input.size(1).
nn.LazyConvTranspose3dA torch.nn.ConvTranspose3d module with lazy initialization of the in_channels argument of the ConvTranspose3d that is inferred from the input.size(1).
nn.UnfoldExtracts sliding local blocks from a batched input tensor.
nn.FoldCombines an array of sliding local blocks into a large containing tensor.
image-20231017132634272 image-20231009205506086

CONV2D

需要自定义卷积核时使用:

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) → Tensor

参数:

image-20231017134345998

测试:

image-20231017135939220
"""
@Author  :shw
@Date    :2023/10/17 13:35
"""
import torch.nn.functional as F
import torch

# 定义输入
input = torch.tensor([[1,2,0,3,1],
                      [0,1,2,3,1],
                      [1,2,1,0,0],
                      [5,2,3,1,1],
                      [2,1,0,1,1]])
# 定义卷积核
kernel = torch.tensor([[1,2,1],
                       [0,1,0],
                       [2,1,0]])

# CONV2D要求输入为(minibatch,in_channels,iH,iW)格式,所以要对格式进行变换
input = torch.reshape(input,(1,1,5,5))
# CONV2D要求卷积核为(out_channels,in_channels/groups,kH,kW)格式
kernel = torch.reshape(kernel,(1,1,3,3))

output = F.conv2d(input,kernel,stride=1)
print(output)
'''
tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])
'''

不需要自定义卷积核

语法:

torch.nn.Conv2d(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T, T]], stride: Union[T, Tuple[T, T]] = 1, padding: Union[T, Tuple[T, T]] = 0, dilation: Union[T, Tuple[T, T]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros')

参数:

  • in_channels (int) – Number of channels in the input image
  • out_channels (int) – Number of channels produced by the convolution
  • kernel_size (int or tuple) – Size of the convolving kernel
  • stride (int or tuple, optional) – Stride of the convolution. Default: 1
  • padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
  • padding_mode (string*,* optional) – 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'
  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

测试:

from torchvision import datasets
from torch.nn import Conv2d
import torch
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

to_tensor = transforms.ToTensor()
# 读入数据
input = datasets.CIFAR10(root="./dataset",train=False,transform=to_tensor,download=True)
# 定义dataloader
dataloader = DataLoader(input,batch_size=64,shuffle=True,num_workers=0,drop_last=False)

class MyModel(torch.nn.Module):

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,input):
        x = self.conv1(input)
        return x

writer = SummaryWriter("logs")

mymodel = MyModel()
step = 0
for data in dataloader:
    images,targets = data
    output = mymodel(images)
    writer.add_images("input",images,global_step=step)

    # 因为显示图片最多3个通道,这里我们输出的结果为6个通道,所以要进行变换
    # 第一个值我们不知道为多少,所以填写-1,会自动根据设定的数值进行计算
    output = torch.reshape(output,(-1,3,30,30))
    writer.add_images("output",output,global_step=step)
    step = step + 1

writer.close()

image-20231017144837012

image-20231017144918174

6.3 最大池化的使用

最大池化(MaxPool),也称为下采样。MaxUnpool,称为下采样。

语法:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

参数:

  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides
  • dilation – a parameter that controls the stride of elements in the window
  • return_indices – if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool2d later
  • ceil_mode – when True, will use ceil(向上取整) instead of floor(向下取整) to compute the output shape,且保留模式。

image-20231017152429181

测试:

image-20231017152237342
import torch
from torch.nn import Conv2d,MaxPool2d,Module
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

to_tensor = transforms.ToTensor()

input = torch.tensor([[1,2,0,3,1],
                      [0,1,2,3,1],
                      [1,2,1,0,0],
                      [5,2,3,1,1],
                      [2,1,0,1,1]])

input = torch.reshape(input,(-1,1,5,5))


class MyModel(Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        x = self.maxpool1(input)
        return x

mymodel = MyModel()
res = mymodel(input)
print(res)
'''
tensor([[[[2, 3],
          [5, 1]]]])
'''

通过引入数据集进行测试:

from torchvision import datasets,transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.nn import MaxPool2d,Module

to_tensor = transforms.ToTensor()

dataset = datasets.CIFAR10(root="./dataset",train=False,transform=to_tensor,download=True)
dataloader = DataLoader(dataset,batch_size=64,shuffle=True)

class MyModel(Module):

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)

    def forward(self,input):
        x = self.maxpool1(input)
        return x

writer = SummaryWriter("logs")

step = 0
mymodel = MyModel()
for data in dataloader:
    images,targets = data
    writer.add_images(tag="images",img_tensor=images,global_step=step)

    outputs = mymodel(images)
    writer.add_images(tag="maxloader",img_tensor=outputs,global_step=step)

    step = step + 1
writer.close()
image-20231017155219629

6.4 非线性激活

常用的非线性激活:

  • ReLU(线性整流单元)
  • PReLU(参数线性整流单元)
  • LeakyReLU(泄漏线性整流单元)
  • ELU(指数线性单元)
  • Sigmod
  • Tanh
  • Softmax

ReLU

测试:

from torch.nn import ReLU,Module
import torch

input = torch.tensor([[1,-0.5],
                      [-1,3]])

input = torch.reshape(input,(-1,1,2,2))

class MyModel(Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.relu1 = ReLU()

    def forward(self,input):
        output = self.relu1(input)
        return output

mymodel = MyModel()
output = mymodel(input)
print(output)
'''
tensor([[[[1., 0.],
          [0., 3.]]]])
'''

引入数据集,进行测试

"""
@Author  :shw
@Date    :2023/10/17 16:35
"""
from torch.nn import Sigmoid,Module
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 导入数据集
to_tensor = transforms.ToTensor()
dataset = datasets.CIFAR10(root="./dataset",train=False,transform=to_tensor,download=True)
dataloader = DataLoader(dataset,batch_size=64,shuffle=True,num_workers=0)

# 定义模型
class MyModel(Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.sigmoid1 = Sigmoid()

    def forward(self,input):
        output = self.sigmoid1(input)
        return output

writer = SummaryWriter("logs")

step = 0
mymodel = MyModel()
for data in dataloader:
    imgs,targets = data
    outputs = mymodel(imgs)
    writer.add_images(tag="img",img_tensor=imgs,global_step=step)
    writer.add_images(tag="sigmoid",img_tensor=outputs,global_step=step)
    step = step + 1

writer.close()
image-20231017164549694

6.5 线性层及其他层

1. Normalization层(归一化层)

语法:

torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

参数:

  • num_features – C* from an expected input of size(N,C,H,W)
  • eps – a value added to the denominator for numerical stability. Default: 1e-5
  • momentum – the value used for the running_mean and running_var computation. Can be set to None for cumulative moving average (i.e. simple average). Default: 0.1
  • affine – a boolean value that when set to True, this module has learnable affine parameters. Default: True
  • track_running_stats – a boolean value that when set to True, this module tracks the running mean and variance, and when set to False, this module does not track such statistics, and initializes statistics buffers running_mean and running_var as None. When these buffers are None, this module always uses batch statistics. in both training and eval modes. Default: True

例子:

# With Learnable Parameters
m = nn.BatchNorm2d(100)
# Without Learnable Parameters
m = nn.BatchNorm2d(100, affine=False)
input = torch.randn(20, 100, 35, 45)
output = m(input)

2. Recurrent层(循环层)

nn.RNNBase
nn.RNNApplies a multi-layer Elman RNN with tanh⁡tanh or ReLUReLU non-linearity to an input sequence.
nn.LSTMApplies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
nn.GRUApplies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
nn.RNNCellAn Elman RNN cell with tanh or ReLU non-linearity.
nn.LSTMCellA long short-term memory (LSTM) cell.
nn.GRUCellA gated recurrent unit (GRU) cell

3. Transformer层

nn.TransformerA transformer model.
nn.TransformerEncoderTransformerEncoder is a stack of N encoder layers
nn.TransformerDecoderTransformerDecoder is a stack of N decoder layers
nn.TransformerEncoderLayerTransformerEncoderLayer is made up of self-attn and feedforward network.
nn.TransformerDecoderLayerTransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.

4. Dropout层

为了防止过拟合

5. Liner层(线性层)

即全连接层。

nn.IdentityA placeholder identity operator that is argument-insensitive.
nn.LinearApplies a linear transformation to the incoming data: y = x T A + b y=x^TA+b y=xTA+b
nn.BilinearApplies a bilinear transformation to the incoming data: y = x 1 T A x 2 + b y=x_1^TAx_2+b y=x1TAx2+b
nn.LazyLinearA torch.nn.Linearmodule with lazy initialization.
image-20231017184627177

测试:

import torch
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
from torch.nn import Module,Linear

to_tensor = transforms.ToTensor()

dataset = datasets.CIFAR10(root="./dataset",train=True,transform=to_tensor,download=True)
dataloader = DataLoader(dataset,batch_size=64,shuffle=True,num_workers=0,drop_last=True)

class MyModel(Module):

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.linear1 = Linear(in_features=196608,out_features=10)

    def forward(self,input):
        output = self.linear1(input)
        return output

mymodel = MyModel()
for data in dataloader:
    imgs,targets = data
    imgs_flatten = torch.flatten(imgs)  # 将数据展平
    output = mymodel(imgs_flatten)
    print(output)
'''
tensor([-0.3241,  0.1549, -0.3120,  0.1616, -0.0332,  0.0360,  0.0210,  0.0720,
        -0.1955,  0.0475], grad_fn=<ViewBackward0>)
tensor([-0.0349, -0.1776, -0.5392,  0.2040,  0.1981, -0.0211, -0.0833,  0.3111,
        -0.2447, -0.2244], grad_fn=<ViewBackward0>)
        ......
'''

torch.flatten

将多维数据展平(一维)

语法:

torch.flatten(input, start_dim=0, end_dim=-1) → Tensor

参数:

  • input (Tensor) – the input tensor.
  • start_dim (int) – the first dim to flatten
  • end_dim (int) – the last dim to flatten

6.6 小实战及Sequential

Sequential

语法:

torch.nn.Sequential(*args)

例子:

# Example of using Sequential
model = nn.Sequential(
          nn.Conv2d(1,20,5),
          nn.ReLU(),
          nn.Conv2d(20,64,5),
          nn.ReLU()
        )

# Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict([
          ('conv1', nn.Conv2d(1,20,5)),
          ('relu1', nn.ReLU()),
          ('conv2', nn.Conv2d(20,64,5)),
          ('relu2', nn.ReLU())
        ]))

对CIFAR10进行分类的神经网络

image-20231017192049147
import torch
from torch.nn import Module,Conv2d,Linear,MaxPool2d,Sequential,Flatten

class MyModel(Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.conv1 = Conv2d(3,32,5,padding=2,stride=1)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32,32,5,padding=2,stride=1)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32,64,5,padding=2,stride=1)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024,64)
        self.linear2 = Linear(64,10)

    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

mymodel = MyModel()
input = torch.ones((63,3,32,32))
output = mymodel(input)
print(output.shape)
# torch.Size([63, 10])

使用Sequential进行改进

import torch
from torch.nn import Module,Conv2d,Linear,MaxPool2d,Sequential,Flatten
from torch.utils.tensorboard import SummaryWriter

class MyModel(Module):

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2,stride=1),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2,stride=1),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2,stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x = self.model1(x)
        return x

mymodel = MyModel()

input = torch.ones((63,3,32,32))
output = mymodel(input)
print(output.shape)
# torch.Size([63, 10])

writer = SummaryWriter("logs")  # 使用SummaryWriter展示模型
writer.add_graph(mymodel,input)
writer.close()
image-20231018123937149

7. 损失函数与反向传播

损失函数:

  • 计算实际输出和目标之间的差距
  • 为我们更新输出提供一定的依据(反向传播),为每个卷积核中的参数设置了一个grad,即梯度。
nn.L1Loss
nn.MSELoss
nn.CrossEntropyLoss
nn.CTCLoss
nn.NLLLoss
nn.PoissonNLLLoss
nn.GaussianNLLLoss
nn.KLDivLoss
nn.BCELoss
nn.BCEWithLogitsLoss
nn.MarginRankingLoss
nn.HingeEmbeddingLoss
nn.MultiLabelMarginLoss
nn.HuberLoss
nn.SmoothL1Loss
nn.SoftMarginLoss
nn.MultiLabelSoftMarginLoss
nn.CosineEmbeddingLoss
nn.MultiMarginLoss
nn.TripletMarginLoss
nn.TripletMarginWithDistanceLoss

L1Loss测试

import torch
from torch.nn import L1Loss

inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)

inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))

loss = L1Loss()
result = loss(inputs,targets)
print(result)  # tensor(0.6667)

均方误差MSELOSS

image-20231018125731647

测试:

import torch
from torch.nn import MSELoss


inputs = torch.tensor([1,2,3],dtype=torch.float32)
targets = torch.tensor([1,2,5],dtype=torch.float32)

inputs = torch.reshape(inputs,(1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3))

loss_mse = MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse)
# tensor(1.3333)

交叉熵损失函数 CROSSENTROPYLOSS

image-20231018130525988

测试:

import torch
from torch.nn import CrossEntropyLoss

cross_entropy_loss = CrossEntropyLoss()
x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,(1,3))

result_cross_entropy_loss = cross_entropy_loss(x,y)
print(result_cross_entropy_loss)
# tensor(1.1019)

使用数据集,测试交叉熵损失函数:

from torch.nn import Linear, Flatten, Conv2d, MaxPool2d, Sequential, Module
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
from torch import nn

to_tensor = transforms.ToTensor()
dataset = datasets.CIFAR10(root="./dataset",transform=to_tensor,download=True,train=False)
dataloader = DataLoader(dataset,batch_size=64,shuffle=True,num_workers=0)

class MyModel(Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = Sequential(
            Conv2d(3,32,5,padding=2,stride=1),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2,stride=1),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2,stride=1),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        x = self.model1(x)
        return x

loss = nn.CrossEntropyLoss()
mymodel = MyModel()
for data in dataloader:
    images,targets = data
    outputs = mymodel(images)
    loss_res = loss(outputs,targets)
    print("loss:{}".format(loss_res))
'''
loss:2.310953140258789
loss:2.3043782711029053
loss:2.318134307861328
loss:2.308051347732544
......
'''

反向传播

loss_res.backward()  # 对损失结果 进行反向传播,求梯度

8. 优化器

根据优化器,使用反向传播求出的参数的梯度,对参数进行调整,达到误差降低目的。

Algorithms描述
AdadeltaImplements Adadelta algorithm.
AdagradImplements Adagrad algorithm.
AdamImplements Adam algorithm.
AdamWImplements AdamW algorithm.
SparseAdamImplements lazy version of Adam algorithm suitable for sparse tensors.
AdamaxImplements Adamax algorithm (a variant of Adam based on infinity norm).
ASGDImplements Averaged Stochastic Gradient Descent.
LBFGSImplements L-BFGS algorithm, heavily inspired by minFunc
RMSpropImplements RMSprop algorithm.
RpropImplements the resilient backpropagation algorithm.
SGDImplements stochastic gradient descent (optionally with momentum).

官方例子:

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)  # lr 学习率
optimizer = optim.Adam([var1, var2], lr=0.0001)

for input, target in dataset:
    optimizer.zero_grad() # 将上一次求出的梯度清零
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()  # 将参数进行调整优化

梯度下降SGD

语法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

参数:

  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
  • lr (float) – learning rate
  • momentum (float, optional) – momentum factor (default: 0)
  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
  • dampening ([float, optional) – dampening for momentum (default: 0)
  • nesterov (bool optional) – enables Nesterov momentum (default: False)

测试:

from torchvision import datasets,transforms
from torch import nn,optim
from torch.utils.data import DataLoader

lr = 0.01
epochs = 10

# 导入数据
to_tensor = transforms.ToTensor()
train_data = datasets.CIFAR10(root="./dataset",train=True,transform=to_tensor,download=True)
test_data = datasets.CIFAR10(root="./dataset",train=False,transform=to_tensor,download=True)
# 处理数据,分组打包
train_dataloader = DataLoader(train_data,batch_size=64,shuffle=True,num_workers=0)
test_dataloader = DataLoader(test_data,batch_size=64,shuffle=True,num_workers=0)

# 构建网络
class Net(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model1 = nn.Sequential(
            nn.Conv2d(3, 32, 5, padding=2, stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, padding=2, stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, padding=2, stride=1),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )
    def forward(self,x):
        return self.model1(x)
      
# 实例化模型
net = Net()

# 定义损失函数
loss = nn.CrossEntropyLoss()

# 定义优化器
optimer = optim.SGD(net.parameters(),lr=lr)

# 训练
for epoch in range(epochs):
    # 每个epoch,总损失
    running_loss = 0.0
    for data in train_dataloader:
        images, targets = data
        optimer.zero_grad()
        outputs = net(images)
        loss_output = loss(outputs,targets)
        loss_output.backward()
        optimer.step()
        running_loss = running_loss + loss_output
    print("epoch:{},loss:{}".format(epoch, running_loss))
'''
epoch:0,loss:1705.0546875
epoch:1,loss:1461.0814208984375
epoch:2,loss:1306.674072265625
epoch:3,loss:1216.27001953125
epoch:4,loss:1149.858154296875
'''

9. 现有网络模型的使用

分类模型:

image-20231018152029480

目标检测模型:

image-20231018152121776

ImageNet数据集

注意:

  • 下载ImageNet数据集,要求已经安装了Scipy模块。
  • 数据集不能公开访问了,必须自己手动去下载数据文件,然后放在root指定的路径中

语法:

torchvision.datasets.ImageNet(root: str, split: str = 'train', **kwargs: Any)

参数:

  • root (string) – Root directory of the ImageNet Dataset.
  • split (string*,* optional) – The dataset split, supports train, or val.
  • transform (callable*,* optional) – A function/transform that takes in an PIL image and returns a transformed version. E.g, transforms.RandomCrop
  • target_transform (callable*,* optional) – A function/transform that takes in the target and transforms it.
  • loader – A function to load an image given its path.

测试:

train_data = datasets.ImageNet(root="../dataset",split="train",transform=to_tensor)

VGG模型

VGG模型分类VGG11、VGG13、VGG16、VGG19。

VGG16

image-20231018152745069

测试:

vgg16 = vgg16(weights=VGG16_Weights.DEFAULT,progress=True)
image-20231018170222155

利用现有的网络,改动其结构。

例如:

添加一个线性层,将输出out_features为1000改为10。

from torchvision.models import vgg16,VGG16_Weights
from torch import nn

vgg16 = vgg16(weights=VGG16_Weights.DEFAULT,progress=True)
# 添加一个线性层
vgg16.add_module("add_linear",nn.Linear(1000,10))
print(vgg16)
image-20231018171151308

在VGG中的classifier中添加一层

from torchvision.models import vgg16,VGG16_Weights
from torch import nn

vgg16 = vgg16(weights=VGG16_Weights.DEFAULT,progress=True)
# 在classifier中添加一层
vgg16.classifier.add_module("add_linear",nn.Linear(1000,10))
print(vgg16)
image-20231018171404365

不进行添加,而在原来的基础上直接进行修改

from torchvision.models import vgg16,VGG16_Weights
from torch import nn

vgg16 = vgg16(weights=VGG16_Weights.DEFAULT,progress=True)
# 不进行添加,而在原来的基础上直接进行修改
vgg16.classifier[6] = nn.Linear(4096,10)
print(vgg16)
image-20231019124415018

10. 网络模型的保存与读取

方式一:使用torch.save()保存模型,使用torch.load()读取模型

保存模型结构和模型参数

  • 保存

    import torch                                                  
    from torchvision.models import vgg16,VGG16_Weights            
                                                                  
    vgg16 = vgg16(weights=VGG16_Weights.DEFAULT,progress=True)    
    # 保存方式 - 1                                                    
    torch.save(vgg16,"./model/vgg16_method1.pth")   # 模型一般保存为pth格式
    
    image-20231019125509068
  • 读取

    import torch
    
    # 方式一 -> 保存方式1 , 加载模型
    vgg16_method1 = torch.load("./model/vgg16_method1.pth")
    print(vgg16_method1)
    
    image-20231019125834063

方式二:

保存模型参数,官方推荐!对于大模型来说,会节省存储空间。

  • 保存

    import torch
    from torchvision.models import vgg16,VGG16_Weights
    
    vgg16 = vgg16(weights=VGG16_Weights.DEFAULT,progress=True)
    
    # 保存方式 - 2
    # 将vgg16的状态保存为一种字典格式(不保存网络模型的结构,只保存网络模型的参数)
    torch.save(vgg16.state_dict(),"./model/vgg16_method2.pth")
    
  • 读取

    因为直接读取到的知识参数,没有网络结构,所以我们要先创建网络结构,然后通过网络结构加载保存的参数

    import torch
    from torchvision.models import vgg16
    
    # 方式二 -> 保存方式2 , 加载模型
    vgg16_method2 = torch.load("./model/vgg16_method2.pth")
    vgg16 = vgg16()
    vgg16.load_state_dict(vgg16_method2)
    print(vgg16)
    
    image-20231019131016223

11. 完整的模型训练套路

使用CIFAR10数据集。

model.py

import torch
from torch import nn

# 搭建网络
class Net(nn.Module):

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model = nn.Sequential(
            nn.Conv2d(3,32,kernel_size=5,padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, kernel_size=5, padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,kernel_size=5,padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024,64),
            nn.Linear(64,10)
        )

    def forward(self,x):
        return self.model(x)

# 验证网络正确性
if __name__ == '__main__':
    net = Net()
    my_input = torch.ones((64,3,32,32))
    my_output = net(my_input)
    print(my_output.shape)

work_main.py

import torch
from torch.utils.data import DataLoader
from torchvision import transforms,datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from model import Net

# 扫描数据集次数
epochs = 10
# 学习率
# learning_rate = 0.01
learning_rate = 1e-2   # 1e-2 = 1*10^(-2) = 0.01

to_tensor = transforms.ToTensor()
# 读取数据
train_dataset = datasets.CIFAR10(root="./dataset",train=True,download=True,transform=to_tensor)
test_dataset = datasets.CIFAR10(root="./dataset",train=False,download=True,transform=to_tensor)
# 加载数据
train_dataloader = DataLoader(train_dataset,batch_size=64,shuffle=True,num_workers=0)
test_dataloader = DataLoader(test_dataset,batch_size=64,shuffle=True,num_workers=0)

# 训练数据集大小
train_data_size = len(train_dataset)
# 测试数据集大小
test_data_size = len(test_dataset)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

 # 创建网络
net = Net()
# 定义损失函数
loss = nn.CrossEntropyLoss()
# 定义优化器
optimizer = torch.optim.SGD(net.parameters(),lr=learning_rate)

# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 添加 tensorboard
writer = SummaryWriter("logs")

# 训练
for epoch in range(epochs):
    print("--------------------第 {} 轮训练开始--------------------".format(epoch+1))
    for data in train_dataloader:
        images, targets = data
        outputs = net(images)
        loss_output = loss(outputs,targets)
        # 优化器优化模型
        optimizer.zero_grad()
        loss_output.backward()
        optimizer.step()

        total_train_step = total_train_step + 1

        if total_train_step%100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss_output.item()))
            writer.add_scalar(tag="Train_Loss", scalar_value=loss_output.item(), global_step=total_train_step)

    # 在每轮训练之后进行测试
    # torch.no_grad() 不进行调优
    total_test_loss = 0  # 测试总损失
    with torch.no_grad():
        for data in test_dataloader:
            images,targets = data
            outputs = net(images)
            loss_output = loss(outputs,targets)
            total_test_loss = total_test_loss + loss_output
    total_test_step = total_test_step + 1
    print("第 {} 轮,整体测试集上的Loss:{}".format(epoch,total_test_loss))
    writer.add_scalar(tag="Test_Total_Loss",scalar_value=total_test_loss,global_step=total_test_step)
    
    # 保存每一轮训练好的模型
    torch.save(net,"./model/net_{}.pth".format(epoch+1))
    print("模型net_{}.pth已保存".format(epoch+1))

writer.close()
image-20231019142828039 image-20231019142847959

在分类问题中,需要显示正确率衡量指标,如:

import torch

outputs = torch.tensor([[0.1,0.2],
                        [0.3,0.4]])
max_index = torch.argmax(outputs,dim=1)  # 求出每行最大值的索引
input_targets = torch.tensor([0,1])
accuracy_num = (max_index==input_targets).sum()
print("准确率为:{}".format(accuracy_num/len(max_index)))
# 准确率为:0.5

将准确率加到我们上面所写的训练模型中

只需更改work_main.py

import torch
from torch.utils.data import DataLoader
from torchvision import transforms,datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from model import Net

# 扫描数据集次数
epochs = 10
# 学习率
# learning_rate = 0.01
learning_rate = 1e-2   # 1e-2 = 1*10^(-2) = 0.01

to_tensor = transforms.ToTensor()
# 读取数据
train_dataset = datasets.CIFAR10(root="./dataset",train=True,download=True,transform=to_tensor)
test_dataset = datasets.CIFAR10(root="./dataset",train=False,download=True,transform=to_tensor)
# 加载数据
train_dataloader = DataLoader(train_dataset,batch_size=64,shuffle=True,num_workers=0)
test_dataloader = DataLoader(test_dataset,batch_size=64,shuffle=True,num_workers=0)

# 训练数据集大小
train_data_size = len(train_dataset)
# 测试数据集大小
test_data_size = len(test_dataset)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

 # 创建网络
net = Net()
# 定义损失函数
loss = nn.CrossEntropyLoss()
# 定义优化器
optimizer = torch.optim.SGD(net.parameters(),lr=learning_rate)

# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 添加 tensorboard
writer = SummaryWriter("logs")

# 训练
for epoch in range(epochs):
    print("--------------------第 {} 轮训练开始--------------------".format(epoch+1))
    for data in train_dataloader:
        images, targets = data
        outputs = net(images)
        loss_output = loss(outputs,targets)
        # 优化器优化模型
        optimizer.zero_grad()
        loss_output.backward()
        optimizer.step()

        total_train_step = total_train_step + 1

        if total_train_step%100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss_output.item()))
            writer.add_scalar(tag="Train_Loss", scalar_value=loss_output.item(), global_step=total_train_step)

    # 在每轮训练之后进行测试
    # torch.no_grad() 不进行调优
    total_test_loss = 0  # 测试总损失
    total_accuracy = 0 # 整体正确的个数
    with torch.no_grad():
        for data in test_dataloader:
            images,targets = data
            outputs = net(images)
            loss_output = loss(outputs,targets)
            total_test_loss = total_test_loss + loss_output
            accuracy = (targets == torch.argmax(outputs,dim=1)).sum() # 计算正确的个数
            total_accuracy = total_accuracy + accuracy
    total_test_step = total_test_step + 1
    print("第 {} 轮,整体测试集上的Loss:{}".format(epoch,total_test_loss))
    print("第 {} 轮,测试集上,整体准确率:{}".format(epoch,total_accuracy/test_data_size))
    writer.add_scalar(tag="Test_Total_Loss",scalar_value=total_test_loss,global_step=total_test_step)
    
    # 保存每一轮训练好的模型
    torch.save(net,"./model/net_{}.pth".format(epoch+1))
    print("模型net_{}.pth已保存".format(epoch+1))

writer.close()
image-20231019151739498

在有些代码中,人们在开始训练之前加上net.train()。在开始测试之前加上net.eval()

train(),eval(),这仅仅对某些层有影响,如Dropout层、BatchNorm层等。并非全部的网络开始训练或者测试时都需要调用该方法。

image-20231019153257791

12. 利用GPU训练

第一种GPU训练方式:

  • 确定网络模型
  • 准备数据(输入,标注)
  • 损失函数
  • 调用.cuda()/或调用.to(device)方法

如:

device = torch.decive("cuda")
net = net.to(device)

使用CUDA

from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch import nn
import torch
from torchvision import transforms,datasets

class Net(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model = nn.Sequential(
            nn.Conv2d(3,32,kernel_size=5,padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, kernel_size=5, padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,kernel_size=5,padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024,64),
            nn.Linear(64,10)
        )
    def forward(self,x):
        return self.model(x)

# 扫描数据集次数
epochs = 10
# 学习率
# learning_rate = 0.01
learning_rate = 1e-2   # 1e-2 = 1*10^(-2) = 0.01

to_tensor = transforms.ToTensor()
# 读取数据
train_dataset = datasets.CIFAR10(root="./dataset",train=True,download=True,transform=to_tensor)
test_dataset = datasets.CIFAR10(root="./dataset",train=False,download=True,transform=to_tensor)
# 加载数据
train_dataloader = DataLoader(train_dataset,batch_size=64,shuffle=True,num_workers=0)
test_dataloader = DataLoader(test_dataset,batch_size=64,shuffle=True,num_workers=0)

# 训练数据集大小
train_data_size = len(train_dataset)
# 测试数据集大小
test_data_size = len(test_dataset)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

 # 创建网络
net = Net()

# 定义损失函数
loss = nn.CrossEntropyLoss()
# 定义优化器
optimizer = torch.optim.SGD(net.parameters(),lr=learning_rate)

#  使用GPU!!
if torch.cuda.is_available():
  net = net.cuda()   
  loss = loss.cuda()

# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 添加 tensorboard
writer = SummaryWriter("logs")

# 训练
for epoch in range(epochs):
    print("--------------------第 {} 轮训练开始--------------------".format(epoch+1))
    net.train()
    for data in train_dataloader:
        images, targets = data
        #  使用GPU!!
        if torch.cuda.is_available():
          images = images.cuda()
          targets = targets.cuda()
        outputs = net(images)
        loss_output = loss(outputs,targets)
        # 优化器优化模型
        optimizer.zero_grad()
        loss_output.backward()
        optimizer.step()

        total_train_step = total_train_step + 1

        if total_train_step%100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss_output.item()))
            writer.add_scalar(tag="Train_Loss", scalar_value=loss_output.item(), global_step=total_train_step)

    # 在每轮训练之后进行测试
    net.eval()
    total_test_loss = 0  # 测试总损失
    total_accuracy = 0 # 整体正确的个数
    # torch.no_grad() 不进行调优
    with torch.no_grad():
        for data in test_dataloader:
            images,targets = data
             #  使用GPU!!
            if torch.cuda.is_available():
              images = images.cuda()
              targets = targets.cuda()
            outputs = net(images)
            loss_output = loss(outputs,targets)
            total_test_loss = total_test_loss + loss_output
            accuracy = (targets == torch.argmax(outputs,dim=1)).sum() # 计算正确的个数
            total_accuracy = total_accuracy + accuracy
    total_test_step = total_test_step + 1
    print("第 {} 轮,整体测试集上的Loss:{}".format(epoch,total_test_loss))
    print("第 {} 轮,测试集上,整体准确率:{}".format(epoch,total_accuracy/test_data_size))
    writer.add_scalar(tag="Test_Total_Loss",scalar_value=total_test_loss,global_step=total_test_step)

    # 保存每一轮训练好的模型
    torch.save(net,"./model/net_{}.pth".format(epoch+1))
    print("模型net_{}.pth已保存".format(epoch+1))

writer.close()

在MAC上,使用MPS

import torch
from torch.utils.data import DataLoader
from torchvision import transforms,datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter

class Net(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.model = nn.Sequential(
            nn.Conv2d(3,32,kernel_size=5,padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, kernel_size=5, padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,kernel_size=5,padding=2,stride=1),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024,64),
            nn.Linear(64,10)
        )
    def forward(self,x):
        return self.model(x)

# 扫描数据集次数
epochs = 10
# 学习率
# learning_rate = 0.01
learning_rate = 1e-2   # 1e-2 = 1*10^(-2) = 0.01

to_tensor = transforms.ToTensor()
# 读取数据
train_dataset = datasets.CIFAR10(root="./dataset",train=True,download=True,transform=to_tensor)
test_dataset = datasets.CIFAR10(root="./dataset",train=False,download=True,transform=to_tensor)
# 加载数据
train_dataloader = DataLoader(train_dataset,batch_size=64,shuffle=True,num_workers=0)
test_dataloader = DataLoader(test_dataset,batch_size=64,shuffle=True,num_workers=0)

# 训练数据集大小
train_data_size = len(train_dataset)
# 测试数据集大小
test_data_size = len(test_dataset)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

 # 创建网络
net = Net()
# 定义损失函数
loss = nn.CrossEntropyLoss()
# 定义优化器
optimizer = torch.optim.SGD(net.parameters(),lr=learning_rate)

# 使用GPU
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
net.to(device)
loss.to(device)

# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 添加 tensorboard
writer = SummaryWriter("gpu_logs")

# 训练
for epoch in range(epochs):
    print("--------------------第 {} 轮训练开始--------------------".format(epoch+1))
    net.train()
    for data in train_dataloader:
        images, targets = data
        # 使用GPU
        images = images.to(device)
        targets = targets.to(device)
        outputs = net(images)
        loss_output = loss(outputs,targets)
        # 优化器优化模型
        optimizer.zero_grad()
        loss_output.backward()
        optimizer.step()

        total_train_step = total_train_step + 1

        if total_train_step%100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss_output.item()))
            writer.add_scalar(tag="Train_Loss", scalar_value=loss_output.item(), global_step=total_train_step)

    # 在每轮训练之后进行测试
    net.eval()
    total_test_loss = 0  # 测试总损失
    total_accuracy = 0 # 整体正确的个数
    # torch.no_grad() 不进行调优
    with torch.no_grad():
        for data in test_dataloader:
            images,targets = data
            # 使用GPU
            images = images.to(device)
            targets = targets.to(device)
            outputs = net(images)
            loss_output = loss(outputs,targets)
            total_test_loss = total_test_loss + loss_output
            accuracy = (targets == torch.argmax(outputs,dim=1)).sum() # 计算正确的个数
            total_accuracy = total_accuracy + accuracy
    total_test_step = total_test_step + 1
    print("第 {} 轮,整体测试集上的Loss:{}".format(epoch,total_test_loss))
    print("第 {} 轮,测试集上,整体准确率:{}".format(epoch,total_accuracy/test_data_size))
    writer.add_scalar(tag="Test_Total_Loss",scalar_value=total_test_loss,global_step=total_test_step)

    # 保存每一轮训练好的模型
    torch.save(net,"./model/net_{}.pth".format(epoch+1))
    print("模型net_{}.pth已保存".format(epoch+1))

writer.close()

M1 Pro 使用GPU跑20轮,用时 0:01:39.507960 ,YYDS!

cuda分配给:

  • 网络模型对象
  • 损失函数对象
  • 训练数据输入、标签,测试数据输入、标签

mps要分配给:

  • 网络模型对象
  • 损失函数对象
  • 训练数据输入、标签,测试数据输入、标签

13. 完整的模型验证套路

利用已经训练好的模型,然后给它提供输入。

从网上下载几张图片。

image-20231020105039598
import torch
from torchvision import transforms, datasets
from PIL import Image, ImageDraw, ImageFont
from model import Net
import  os

# 读取数据 为了获取标签
test_dataset = datasets.CIFAR10(root="./dataset",train=False,download=True)
classes = test_dataset.classes

# 定义图片变换
transform = transforms.Compose([
    transforms.Resize((32,32)),
    transforms.ToTensor()
])

# 读取图片
root_dir = "./images"
image_list = os.listdir("./images")
image_tensor_list = []
image_PIL_list = []
for item in image_list:
    path = os.path.join(root_dir,item)
    image_PIL = Image.open(path)
    image_tensor = transform(image_PIL)
    image_tensor = torch.reshape(image_tensor, (-1, 3, 32, 32))
    image_tensor = image_tensor.to(device)
    image_PIL_list.append(image_PIL)
    image_tensor_list.append(image_tensor)

# 读取模型  因为训练时使用的是gpu(mps) 我们测试时要映射为使用cpu进行测试
net = torch.load("./model/net_gpu_43.pth",map_location="cpu")

# 测试
num = 0
net.eval()
with torch.no_grad():
    for item in image_tensor_list:
        output = net(item)
        output_index = torch.argmax(output, dim=1)
        out_text = classes[output_index]
        
        # 图片中写入文字
        H1 = ImageDraw.Draw(image_PIL_list[num])
        myFont = ImageFont.truetype('/System/Library/Fonts/Times.ttc', size=60)
        H1.text((30,30),out_text,fill=(255,0,0),font=myFont)
        image_PIL_list[num].save(os.path.join("./output",str(num)+".jpg"))
        num = num + 1
image-20231020105114539 image-20231020105136752

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1116086.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

苹果手机内存清理怎么做?5招教你拯救内存!

大家的手机内存还能坚持多久呢&#xff1f;无论是什么牌子的手机&#xff0c;只要使用的时间越久&#xff0c;手机的内存必然会越来越小。如果不及时清理手机里的历史缓存、垃圾文件等数据&#xff0c;就会导致手机变得迟缓、卡顿。 那么&#xff0c;我们该怎么做呢&#xff1…

如何使用 GoGoCode 一键 Vue2 转换 Vue3

前言 从今年年初开始&#xff0c;项目开始升级优化&#xff0c;将之前的 Vue2 旧版本整体升级到 Vue3 版本。在重写了几个 Vue 文件后&#xff0c;我发现做的都是一些机械性的工作&#xff0c;效率低且重复性大。于是就试着搜索了一下有没有什么能够批量转换代码格式的工具&am…

SPE(Single Pair Ethernet)

以太网标准 讲SPE&#xff08;Single Pair Ethernet&#xff09;之前我们先了解一下以太网标准&#xff1a; CategoryStandardCable length(m)Data rateDuplex CapabilityWiresFast Ethernet10/100BASE-T10010Mb/s to 100Mb/sFull4Gigabit Ethernet1000/10GBAST-T1001Gb/s to …

UOS系统无法开机问题解决

1、问题截图1 &#xff1a; 2、问题截图2 &#xff1a; 3、问题截图3&#xff1a; 解决方案&#xff1a; 修复磁盘无效&#xff0c;建议拷贝数据&#xff0c;还原系统 请先拷贝数据 进live模式在root a或root b 或系统盘找到Home文件夹里-找到用户名-里面就是用户的数据&am…

四川竹哲电商:抖店怎么修改经营类目?

抖店是抖音推出的一款电商工具&#xff0c;通过抖店可以帮助商家在抖音上开展经营活动。在抖店平台上&#xff0c;商家需要选择经营类目&#xff0c;以便在相应的领域展示商品和提供服务。然而&#xff0c;有时候商家可能需要修改经营类目&#xff0c;以适应经营策略调整或扩大…

什么是无磁远传水表?工作原理是怎样的?

无磁远传水表是一种新型的智能水表&#xff0c;与传统水表相比&#xff0c;它具有更高的精度和可靠性&#xff0c;并且可以实现远程读数和控制。那么&#xff0c;无磁远传水表的工作原理是怎样的呢?下面&#xff0c;小编来为大家介绍下什么是无磁水表?它的工作原理是怎样的&a…

MySQL 三大日志(bin log、redo log、undo log)

redo log redo log (重做日志) 是 InnoDB 存储引擎独有的&#xff0c;它让 MySQL有了崩溃恢复的能力&#xff0c;是事务中实现 持久化的重要操作 比如 MySQL 实例宕机了&#xff0c;重启时&#xff0c;InnoDB 存储引擎会使用 redo log 恢复数据&#xff0c;保证数据的持久性与…

数字孪生技术:重塑企业经营的未来

在当今数字化时代&#xff0c;企业经营面临了前所未有的挑战和机遇。数字孪生技术作为新一代数字化工具&#xff0c;正在成为企业走向成功的关键。数字孪生是一种通过数字模型在虚拟世界中模拟和反映物理实体、过程和系统的技术&#xff0c;它为企业经营带来了许多重要的帮助。…

Sourcetree突然打不开,双击打开,图片闪一下就没反应了

解决方案如下&#xff1a; 1.点击图标&#xff0c;右键点击“打开文件所在位置 2.返回上一级&#xff0c;找到Atlassian文件夹 3.进入此文件夹下&#xff0c;删除SourceTree.exe_Url文件夹 4.再双击桌面的Sourcetree图标&#xff0c;可以正常打开。 最近刚遇到此问题&#x…

【广州华锐互动】智慧水务3D可视化数字孪生大屏定制开发

污水处理流程的复杂性需要一种有效的方法进行理解和优化。传统的2D图表和文字描述方法往往无法全面、直观地展示污水处理的各个环节。然而&#xff0c;智慧排水3D数字化管控系统可以为污水处理流程提供更深入、更全面的理解&#xff0c;从而帮助改进污水管理。 首先&#xff0c…

Vue2双向数据绑定的原理

Vue.js 是采用数据劫持结合发布者-订阅者模式的方式&#xff0c;通过Object.defineProperty()来劫持各个属性的setter&#xff0c;getter&#xff0c;在数据变动时发布消息给订阅者&#xff0c;触发相应的监听回调 Vue双向数据绑定主要有以下几个步骤&#xff1a; 模板解析 事件…

为何说只有 1 种实现线程的方法?

Java全能学习面试指南&#xff1a;https://javaxiaobear.cn 今天我们来学习为什么说本质上只有一种实现线程的方式&#xff1f;实现 Runnable 接口究竟比继承 Thread 类实现线程好在哪里&#xff1f; 实现线程是并发编程中基础中的基础&#xff0c;因为我们必须要先实现多线程…

虹科活动 | 探索全新AR应用时代,虹科AR VIP研讨会广州场回顾!

文章来源&#xff1a;虹科数字化AR 阅读原文&#xff1a;https://mp.weixin.qq.com/s/7tmYR42Tw5XLn70fm8Nnew 主题演讲 本次研讨会&#xff0c;虹科特邀 “工业AR鼻祖” 美国Vuzix公司的首席应用工程师郑慎方先生进行主题演讲&#xff0c;并邀请到了各界的专业人士和企业代表参…

ESRI ArcGIS Pro 3.0-3.0.2图文安装教程及下载

ArcGIS 是由美国著名的地理信息系统公司 Esri 开发的一款地理信息系统软件。ArcGIS Pro是一款功能强大的单桌面 GIS 应用程序&#xff0c;是在桌面上创建和处理空间数据的基本应用程序。ArcGIS Pro支持数据可视化和数据高级分析&#xff0c;可以创建 2D 地图和3D 场景。它支持跨…

无需公网IP,通过内网穿透轻松搭建微信公众号开发本地调试环境!

文章目录 前言1. 配置本地服务器2. 内网穿透2.1 下载安装cpolar内网穿透2.2 创建隧道 3. 测试公网访问4. 固定域名4.1 保留一个二级子域名4.2 配置二级子域名 5. 使用固定二级子域名进行微信开发 前言 在微信公众号开发中&#xff0c;微信要求开发者需要拥有自己的服务器资源来…

如何建立风险、内控与合规三位一体的管控体系?

为指导企业开展风险管理工作&#xff0c;进一步提高管理水平&#xff0c;增强竞争力&#xff0c;促进稳步发展&#xff0c;自2006年开始&#xff0c;我国国资委、财政部等相关部委借鉴COSO理论及国际上影响较大的风险管理和内部控制标准&#xff0c;结合国内的实际情况&#xf…

构建跨平台应用程序:Apollo在移动开发中的应用

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 「推荐专栏」&#xff1a; ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄&#xff0c;vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

软件工程与计算(二十二)软件开发过程模型

&#xff08;自顶向下&#xff0c;逐层细化&#xff09; 目录 一.软件开发的典型阶段 1.需求工程 2.软件设计 3.软件构造 4.软件测试 5.软件交付 6.软件维护 二.软件生命周期模型 三.软件过程模型 四.构建-修复模型 五.瀑布模型 六.增量迭代模型 七.演化模型 八…

优维产品最佳实践第12期:IT资源管理首页丰富

​ 背 景 当我们进入平台后&#xff0c;默认跳转至IT资源管理首页&#xff0c;因此该页面的优化与丰富将极大的提高平台使用者的体验和效率。优化后的首页可以更好地展示常用模型、小产品、外部系统、以及保存的所有关系查询和快速查询条件&#xff0c;使用户能够更快捷、方便…

抖音同城热搜榜上榜技巧有哪些

抖音同城热搜榜上的话题通常是具有一定热度和社会关注度的。因此&#xff0c;在制作视频时&#xff0c;可以关注一些热门话题&#xff0c;如社会热点、明星八卦、节日庆典等。以社会热点为例&#xff0c;可以关注一些突发事件、政策变革等&#xff0c;这样可以在短时间内吸引大…