GEO生信数据挖掘(九)WGCNA分析

news2025/1/15 23:19:34

第六节,我们使用结核病基因数据,做了一个数据预处理的实操案例。例子中结核类型,包括结核,潜隐进展,对照和潜隐,四个类别。第七节延续上个数据,进行了差异分析。 第八节对差异基因进行富集分析。本节进行WGCNA分析。

目录

加载数据,进行聚类

初次聚类观察

自己定义红线位置,进行切割划分

载入性状数据

增加形状信息后,再次聚类

网络构建

选取soft-thresholding powers

基于tom的差异的基因聚类,绘制聚类树

根据聚类情况,设置颜色

计算eigengenes

模块的自动合并

模块与临床形状的关系热图 (关键数据)

红色模块样本表达情况(相关性大)

产生了很多数据(各个模块的和临床性状)

后续挖掘核心基因时,需要用到Cytoscape,生成绘图所需要的数据


加载数据,进行聚类

library(WGCNA)
#读取目录名称,方便复制粘贴
dir()
#加载数据
load('DEG_TB_LTBI_step13.Rdata')


#这里行为样品名,列为基因名
################################样品聚类#################### 
datExpr = t(dataset_TB_LTBI_DEG)
#初次聚类
sampleTree = hclust(dist(datExpr), method = "average")
# Plot the sample tree: Open a graphic output window of size 20 by 15 inches
# The user should change the dimensions if the window is too large or too small.
sizeGrWindow(12,9)
#pdf(file='sampleCluestering.pdf',width = 12,height = 9)
par(cex=0.6)
par(mar=c(0,4,2,0))
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5,
     cex.axis = 1.5, cex.main = 2)

#结果图片自己导出PDF,文件名=1_sampleClustering.pdf



### Plot a line to show the cut
abline(h = 87, col = "red")##剪切高度不确定,故无红线

dev.off()

初次聚类观察

自己定义红线位置,进行切割划分

本例发现右侧有些样本孤立,适合被剔除,设置红线87切割。

左侧也被切成两块,需要做处理,保留。


### Determine cluster under the line
clust = cutreeStatic(sampleTree, cutHeight = 87, minSize = 10)
table(clust)
#clust
#0  1  2 
#5 57 40

### clust 1 contains the samples we want to keep.
keepSamples = (clust==1|clust==2)
datExpr0 = datExpr[keepSamples, ]
dim(datExpr0) #[1]   97 2813
#保存数据
save(datExpr0,file='datExpr0_cluster_filter.Rdata')

载入性状数据

匹配样本名称,性状数据与表达数据保证一致


#################### 载入性状数据###########################
#加载自己的性状数据
load('design_TB_LTBI.Rdata')
traitData=design
#Loading clinical trait data
#traitData = read.table("trait_D.txt",row.names=1,header=T,comment.char = "",check.names=F)########trait file name can be changed######性状数据文件名,根据实际修改,如果工作路径不是实际性状数据路径,需要添加正确的数据路径
dim(traitData)
#names(traitData)
# remove columns that hold information we do not need.
#allTraits = traitData
dim(traitData)
names(traitData)

# Form a data frame analogous to expression data that will hold the clinical traits.
fpkmSamples = rownames(datExpr0)
traitSamples =rownames(traitData)
#匹配样本名称,性状数据与表达数据保证一致
traitRows = match(fpkmSamples, traitSamples)
datTraits = traitData[traitRows,]
rownames(datTraits) 
collectGarbage()

增加形状信息后,再次聚类


# Re-cluster samples
sampleTree2 = hclust(dist(datExpr0), method = "average")
# Convert traits to a color representation: white means low, red means high, grey means missing entry
traitColors = numbers2colors(datTraits, signed = FALSE)
# Plot the sample dendrogram and the colors underneath.

#sizeGrWindow(20,20)
##pdf(file="2_Sample dendrogram and trait heatmap.pdf",width=12,height=12)
plotDendroAndColors(sampleTree2, traitColors,
                    groupLabels = names(datTraits),
                    main = "Sample dendrogram and trait heatmap")

dev.off()

下方红色,大致分成了两类,效果不错。

网络构建

#############################network constr########################################

# Allow multi-threading within WGCNA. At present this call is necessary.
# Any error here may be ignored but you may want to update WGCNA if you see one.
# Caution: skip this line if you run RStudio or other third-party R environments.
# See note above.
enableWGCNAThreads()


# Choose a set of soft-thresholding powers
powers = c(1:15)

# Call the network topology analysis function
sft = pickSoftThreshold(datExpr0, powerVector = powers, verbose = 5)

# Plot the results:
sizeGrWindow(15, 9)
#pdf(file="3_Scale independence.pdf",width=9,height=5)
#pdf(file="Rplot03.pdf",width=9,height=5)
par(mfrow = c(1,2))
cex1 = 0.9
# Scale-free topology fit index as a function of the soft-thresholding power
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",
     main = paste("Scale independence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     labels=powers,cex=cex1,col="red");
# this line corresponds to using an R^2 cut-off of h
abline(h=0.90,col="red")
# Mean connectivity as a function of the soft-thresholding power
plot(sft$fitIndices[,1], sft$fitIndices[,5],
     xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
     main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
dev.off()

选取soft-thresholding powers

测试阈值,注意观察,突破红线的附近时取值,下方代码时候的是自适应的方法选取 soft-thresholding powers

######chose the softPower
#datExpr0= datExpr0[,-1]
softPower =sft$powerEstimate
adjacency = adjacency(datExpr0, power = softPower)

##### Turn adjacency into topological overlap
TOM = TOMsimilarity(adjacency);
dissTOM = 1-TOM

# Call the hierarchical clustering function
geneTree = hclust(as.dist(dissTOM), method = "average");
# Plot the resulting clustering tree (dendrogram)

#sizeGrWindow(12,9)
pdf(file="4_Gene clustering on TOM-based dissimilarity.pdf",width=12,height=9)
plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based dissimilarity",
     labels = FALSE, hang = 0.04)
dev.off()

基于tom的差异的基因聚类,绘制聚类树

根据聚类情况,设置颜色


# We like large modules, so we set the minimum module size relatively high:
minModuleSize = 30
# Module identification using dynamic tree cut:
dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM,
                            deepSplit = 2, pamRespectsDendro = FALSE,
                            minClusterSize = minModuleSize);
table(dynamicMods)



# Convert numeric lables into colors
dynamicColors = labels2colors(dynamicMods)
table(dynamicColors)
# Plot the dendrogram and colors underneath
#sizeGrWindow(8,6)
pdf(file="5_Dynamic Tree Cut.pdf",width=8,height=6)
plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut",
                    dendroLabels = FALSE, hang = 0.03,
                    addGuide = TRUE, guideHang = 0.05,
                    main = "Gene dendrogram and module colors")
dev.off()

计算eigengenes


# Calculate eigengenes
MEList = moduleEigengenes(datExpr0, colors = dynamicColors)
MEs = MEList$eigengenes
# Calculate dissimilarity of module eigengenes
MEDiss = 1-cor(MEs);
# Cluster module eigengenes
METree = hclust(as.dist(MEDiss), method = "average")
# Plot the result
#sizeGrWindow(7, 6)
pdf(file="6_Clustering of module eigengenes.pdf",width=7,height=6)
plot(METree, main = "Clustering of module eigengenes",
     xlab = "", sub = "")
MEDissThres = 0.25######剪切高度可修改
# Plot the cut line into the dendrogram
abline(h=MEDissThres, col = "red")
dev.off()

模块的自动合并


# Call an automatic merging function
merge = mergeCloseModules(datExpr0, dynamicColors, cutHeight = MEDissThres, verbose = 3)
# The merged module colors
mergedColors = merge$colors
# Eigengenes of the new merged modules:
mergedMEs = merge$newMEs

#sizeGrWindow(12, 9)
pdf(file="7_merged dynamic.pdf", width = 9, height = 6)
plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors),
                    c("Dynamic Tree Cut", "Merged dynamic"),
                    dendroLabels = FALSE, hang = 0.03,
                    addGuide = TRUE, guideHang = 0.05)
dev.off()


# Rename to moduleColors
moduleColors = mergedColors
# Construct numerical labels corresponding to the colors
colorOrder = c("grey", standardColors(50))
moduleLabels = match(moduleColors, colorOrder)-1
MEs = mergedMEs

# Save module colors and labels for use in subsequent parts
save(MEs, TOM, dissTOM,  moduleLabels, moduleColors, geneTree, sft, file = "networkConstruction-stepByStep.RData")

模块与临床形状的关系热图 (关键数据)

#############################relate modules to external clinical triats######################################
# Define numbers of genes and samples
nGenes = ncol(datExpr0)
nSamples = nrow(datExpr0)

moduleTraitCor = cor(MEs, datTraits, use = "p")
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)

#sizeGrWindow(10,6)
pdf(file="8_Module-trait relationships.pdf",width=10,height=6)
# Will display correlations and their p-values
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
                   signif(moduleTraitPvalue, 1), ")", sep = "")

dim(textMatrix) = dim(moduleTraitCor)
par(mar = c(6, 8.5, 3, 3))

# Display the correlation values within a heatmap plot #修改性状类型 data.frame
labeledHeatmap(Matrix = moduleTraitCor,
               xLabels = names(data.frame(datTraits)),
               yLabels = names(MEs),
               ySymbols = names(MEs),
               colorLabels = FALSE,
               colors = greenWhiteRed(50),
               textMatrix = textMatrix,
               setStdMargins = FALSE,
               cex.text = 0.5,
               zlim = c(-1,1),
               main = paste("Module-trait relationships"))
dev.off()

挑选相关性最高的,具有统计学意义的(p<0.05),red模块最佳!

红色模块样本表达情况(相关性大)

产生了很多数据(各个模块的和临床性状)

######## Define variable weight containing all column of datTraits

###MM and GS


# names (colors) of the modules
modNames = substring(names(MEs), 3)

geneModuleMembership = as.data.frame(cor(datExpr0, MEs, use = "p"))
MMPvalue = as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples))

names(geneModuleMembership) = paste("MM", modNames, sep="")
names(MMPvalue) = paste("p.MM", modNames, sep="")

#names of those trait
traitNames=names(data.frame(datTraits))
class(datTraits)

geneTraitSignificance = as.data.frame(cor(datExpr0, datTraits, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))

names(geneTraitSignificance) = paste("GS.", traitNames, sep="")
names(GSPvalue) = paste("p.GS.", traitNames, sep="")


####plot MM vs GS for each trait vs each module


##########example:royalblue and CK
module="red"
column = match(module, modNames)
moduleGenes = moduleColors==module

trait="TB"
traitColumn=match(trait,traitNames)

sizeGrWindow(7, 7)

#par(mfrow = c(1,1))
verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),
abs(geneTraitSignificance[moduleGenes, traitColumn]),
xlab = paste("Module Membership in", module, "module"),
ylab = paste("Gene significance for ",trait),
main = paste("Module membership vs. gene significance\n"),
cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)
######

for (trait in traitNames){
  traitColumn=match(trait,traitNames)
  
  for (module in modNames){
    column = match(module, modNames)
    moduleGenes = moduleColors==module
    
    if (nrow(geneModuleMembership[moduleGenes,]) > 1){####进行这部分计算必须每个模块内基因数量大于2,由于前面设置了最小数量是30,这里可以不做这个判断,但是grey有可能会出现1个gene,它会导致代码运行的时候中断,故设置这一步
      
      #sizeGrWindow(7, 7)
      pdf(file=paste("9_", trait, "_", module,"_Module membership vs gene significance.pdf",sep=""),width=7,height=7)
      par(mfrow = c(1,1))
      verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),
                         abs(geneTraitSignificance[moduleGenes, traitColumn]),
                         xlab = paste("Module Membership in", module, "module"),
                         ylab = paste("Gene significance for ",trait),
                         main = paste("Module membership vs. gene significance\n"),
                         cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)
      dev.off()
    }
  }
}

#####
names(datExpr0)
probes = names(datExpr0)


#################export GS and MM############### 

geneInfo0 = data.frame(probes= probes,
                       moduleColor = moduleColors)

for (Tra in 1:ncol(geneTraitSignificance))
{
  oldNames = names(geneInfo0)
  geneInfo0 = data.frame(geneInfo0, geneTraitSignificance[,Tra],
                         GSPvalue[, Tra])
  names(geneInfo0) = c(oldNames,names(geneTraitSignificance)[Tra],
                       names(GSPvalue)[Tra])
}

for (mod in 1:ncol(geneModuleMembership))
{
  oldNames = names(geneInfo0)
  geneInfo0 = data.frame(geneInfo0, geneModuleMembership[,mod],
                         MMPvalue[, mod])
  names(geneInfo0) = c(oldNames,names(geneModuleMembership)[mod],
                       names(MMPvalue)[mod])
}
geneOrder =order(geneInfo0$moduleColor)
geneInfo = geneInfo0[geneOrder, ]

write.table(geneInfo, file = "10_GS_and_MM.xls",sep="\t",row.names=F)

####################################################Visualizing the gene network#######################################################


nGenes = ncol(datExpr0)
nSamples = nrow(datExpr0)


# Transform dissTOM with a power to make moderately strong connections more visible in the heatmap
plotTOM = dissTOM^7
# Set diagonal to NA for a nicer plot
diag(plotTOM) = NA



# Call the plot function

sizeGrWindow(9,9)  #这个耗电脑内存
pdf(file="12_Network heatmap plot_all gene.pdf",width=9, height=9)
TOMplot(plotTOM, geneTree, moduleColors, main = "Network heatmap plot, all genes")
dev.off()


nSelect = 400
# For reproducibility, we set the random seed
set.seed(10)
select = sample(nGenes, size = nSelect)
selectTOM = dissTOM[select, select]
# There's no simple way of restricting a clustering tree to a subset of genes, so we must re-cluster.
selectTree = hclust(as.dist(selectTOM), method = "average")
selectColors = moduleColors[select]

# Open a graphical window
#sizeGrWindow(9,9)
# Taking the dissimilarity to a power, say 10, makes the plot more informative by effectively changing
# the color palette; setting the diagonal to NA also improves the clarity of the plot
plotDiss = selectTOM^7
diag(plotDiss) = NA

pdf(file="13_Network heatmap plot_selected genes.pdf",width=9, height=9)
TOMplot(plotDiss, selectTree, selectColors, main = "Network heatmap plot, selected genes")
dev.off()



####################################################Visualizing the gene network of eigengenes####################################################


#sizeGrWindow(5,7.5)
pdf(file="14_Eigengene dendrogram and Eigengene adjacency heatmap.pdf", width=5, height=7.5)
par(cex = 0.9)
plotEigengeneNetworks(MEs, "", marDendro = c(0,4,1,2), marHeatmap = c(3,4,1,2), cex.lab = 0.8, xLabelsAngle= 90)
dev.off()

#or devide into two parts
# Plot the dendrogram
#sizeGrWindow(6,6);
pdf(file="15_Eigengene dendrogram_2.pdf",width=6, height=6)
par(cex = 1.0)
plotEigengeneNetworks(MEs, "Eigengene dendrogram", marDendro = c(0,4,2,0), plotHeatmaps = FALSE)
dev.off()

pdf(file="15_Eigengene adjacency heatmap_2.pdf",width=6, height=6)
# Plot the heatmap matrix (note: this plot will overwrite the dendrogram plot)
par(cex = 1.0)
plotEigengeneNetworks(MEs, "Eigengene adjacency heatmap", marHeatmap = c(3,4,2,2), plotDendrograms = FALSE, xLabelsAngle = 90)
dev.off()


后续挖掘核心基因时,需要用到Cytoscape,生成绘图所需要的数据

###########################Exporting to Cytoscape all one by one ##########################




# Select each module
'''
Error in exportNetworkToCytoscape(modTOM, edgeFile = paste("CytoscapeInput-edges-",  : 
  Cannot determine node names: nodeNames is NULL and adjMat has no dimnames.
  datExpr0 格式需要dataframe
'''
modules =module
for (mod in 1:nrow(table(moduleColors)))
{
  
  modules = names(table(moduleColors))[mod]
  # Select module probes
  probes = names(data.frame(datExpr0))  # 
  inModule = (moduleColors == modules)
  modProbes = probes[inModule]
  modGenes = modProbes
  # Select the corresponding Topological Overlap
  modTOM = TOM[inModule, inModule]
  
  dimnames(modTOM) = list(modProbes, modProbes)
  # Export the network into edge and node list files Cytoscape can read
  cyt = exportNetworkToCytoscape(modTOM,
                                 edgeFile = paste("CytoscapeInput-edges-", modules , ".txt", sep=""),
                                 nodeFile = paste("CytoscapeInput-nodes-", modules, ".txt", sep=""),
                                 weighted = TRUE,
                                 threshold = 0.02,
                                 nodeNames = modProbes,
                                 altNodeNames = modGenes,
                                 nodeAttr = moduleColors[inModule])
}

关系网络的构建完毕,绘图找核心基因,Cytoscape 到底怎么玩?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1099189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows内网渗透正向代理

内网渗透正向代理 文章目录 内网渗透正向代理1 正向代理图2 环境准备2.1 正向代理需求&#xff1a; 3 网卡配置3.1 【redream】主机3.2 【base】主机双网卡3.3 【yvkong】网卡设置 4 启动4.1【redream】网卡配置&#xff1a;4.2【base】网卡配置&#xff1a;4.3【yvkong】网卡地…

ArcGis打开影像显示全黑解决方法

我们加载图像&#xff0c;显示如下&#xff1a; 解决方法&#xff1a; 问题分析&#xff1a;Gamma值高于1影像亮化&#xff0c;低于1影像暗化。栅格影像导入进来呈现黑色&#xff0c;可能是因为影像的“Gamma校正”设置出现问题&#xff0c;影响了影像的拉伸度、亮度、对比度等…

FTP客户端lftp

目录 准备 1 lftp介绍 2 lftp语法 3 lftp选项 4 下载 4.1 服务端 4.2 客户端 5 上传 5.1 客户端 5.2 服务端 准备 两台虚拟机&#xff08;且保证互通&#xff09;关闭防火墙和SeLinux。 关闭防火墙 systemctl stop firewalld 关闭SeLinux setenforce 0 vi /etc/s…

12-k8s-HPA自动扩缩容

文章目录 一、k8s弹性伸缩类型二、HPA原理三、metrics-server插件四、创建nginx提供负载测试五、部署HPA master操作即可 一、k8s弹性伸缩类型 Cluster-Autoscale: 集群容量(node数量)自动伸缩&#xff0c;跟自动化部署相关的&#xff0c;依赖iaas的弹性伸缩&#xff0c;主要用…

学术特稿 | 著名书法家项国就:中国古代书法章草美学展现的形式分析

、 论文入编&#xff1a;大型综合美术类核心期刊《新美域》杂志2023年第七期。 中国古代书法章草美学展现的形式分析 摘要&#xff1a;本文旨在探讨中国古代书法风格章草的美学特点、审美价值以及代表性作品和艺术家。章草的美学特点体现在简洁流畅的笔画、清晰规整的字形结构以…

[架构之路-237]:目标系统 - 纵向分层 - 网络通信 - DNS的递归查询和迭代查询

目录 一、DNS协议与DNS系统架构 1.1 什么是DNS协议 1.2 为什么需要DNS协议 1.3 DNS系统架构 二、DNS系统的查询方式 2.1 递归与迭代的比较 2.2 DNS递归查询 2.3 DNS迭代查询 一、DNS协议与DNS系统架构 1.1 什么是DNS协议 DNS&#xff08;Domain Name System&#xff…

nRF52832蓝牙从机

具体内容直接参考《nRF52832开发指南》 本文仅对关键内容和容易搞错的内容进行描述。 广播事件 扫描事件 连接事件 从机框架 日志配置和初始化log_init&#xff0c;具体参考手册和示例程序&#xff1b;APP定时器初始化timers_init&#xff0c;具体参考手册和示例程序&…

EFLK与logstash过滤

目录 一、Filebeat工作原理&#xff1a; 二、为什么要使用Filebeat&#xff1a; 三、Filebeat和Logstash的区别&#xff1a; 四、logstash 的过滤插件&#xff1a; 五、FilebeatELK 部署&#xff1a; 1. 安装filebeat&#xff1a; 2. 设置 filebeat 的主配置文件&#xff1…

SpringBoot面试题7:SpringBoot支持什么前端模板?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:SpringBoot支持什么前端模板? Spring Boot支持多种前端模板,其中包括以下几种常用的: Thymeleaf:Thymeleaf是一种服务器端Java模板引擎,能够…

【2】c++11新特性(稳定性和兼容性)—>超长整型 long long

c11标准要求long long整型可以在不同的平台上有不同的长度&#xff0c;但是至少64位&#xff0c;long long整型有两种&#xff1a; 有符号long long&#xff1a;–对应类型的数值可以使用LL或者ll后缀 long long num1 123456789LL; long long num2 123456789ll;无符号unsign…

Linux性能优化--实用工具:性能工具助手

8.0 概述 本章介绍一些在Linux系统上可用的实用程序&#xff0c;它们能够加强性能工具的有效性和可用性。实用工具本身不是性能工具&#xff0c;但是当它们与性能工具一起使用时&#xff0c;它们可以帮助完成如下功能&#xff1a;自动执行繁琐的任务、分析性能统计数据&#x…

【机器学习】逻辑回归

文章目录 逻辑回归定义损失函数正则化 sklearn里面的逻辑回归 逻辑回归 逻辑回归&#xff0c;是一种名为“回归”的线性分类器&#xff0c;其本质是由线性回归变化而来的&#xff0c;一种广泛使用于分类问题中的广义回归算法。 线性回归是机器学习中最简单的的回归算法&#…

基本分段存储管理方式(分段,段表,地址转换以及与分页管理对比)

1.分段 1.进程的地址空间: 按照程序自身的逻辑关系划分为若干个段&#xff0c;每个段都有一个段名 &#xff08;在低级语言中&#xff0c;程序员使用段名来编程&#xff09;&#xff0c;每段从0开始编址. 2.内存分配规则: 以段为单位进行分配&#xff0c;每个段在内存中占据…

BIM轻量化技术简介

BIM轻量化技术是指在工程建筑的BIM模型建立之后&#xff08;利用专业的BIM建模软件&#xff0c;比如Autodesk Revit, Bentley MicroStation, DS Catia等&#xff09;&#xff0c;通过对BIM模型的压缩处理等技术手段&#xff0c;让BIM可以在各类WEB浏览器、移动App上被使用的技术…

【网络协议】聊聊DHCP和PXE 工作原理

DHCP 动态主机配置协议 对于每个主机来说&#xff0c;只要连接了网络&#xff0c;那么就会配置一个IP地址&#xff0c;那么这个IP地址&#xff0c;如果是手动配置的话&#xff0c;对于公司内部的人员来说都要找IT进行配置&#xff0c;这个太浪费人力物力了&#xff0c;所以解决…

【软件设计师】面向对象类图的六种关系

面向对象类图的六种关系&#xff08;继承、实现、依赖、关联、聚合、组合&#xff09; 1、泛化&#xff08;继承&#xff09;2、实现3、依赖4、关联5、聚合6、组合 面向对象类图的六种关系&#xff08;继承、实现、依赖、关联、聚合、组合&#xff09; 进行面向对象设计时&…

为什么要做服务器监控?

应用程序一般都是在服务器上运行&#xff0c;可以这么说&#xff0c;服务器就是一家公司的全部&#xff0c;因此&#xff0c;服务器必须要监控&#xff0c;来确保性能和正常运行。 如果服务器宕机&#xff0c;那会导致很多问题&#xff0c;会给公司带来巨大的损失&#xff0c;…

[论文精读]Semi-Supervised Classification with Graph Convolutional Networks

论文原文&#xff1a;[1609.02907] Semi-Supervised Classification with Graph Convolutional Networks (arxiv.org) 论文代码&#xff1a;GitHub - tkipf/gcn: Implementation of Graph Convolutional Networks in TensorFlow 英文是纯手打的&#xff01;论文原文的summari…

小黑子—MyBatis:第五章

MyBatis入门5.0 十三 小黑子的MyBatis高级映射及延迟加载13.1 多对一映射13.1.1 实体类关系怎么设计13.1.2 第一种方式&#xff1a;级联属性映射13.1.2 第二种方式 association 关联13.1.3 第三种方式 分步查询13.1.3 延迟加载 13.2 一对多映射13.2.1 一对多的映射原理13.2.2 第…

lv8 嵌入式开发-网络编程开发 18 广播与组播的实现

目录 1 广播 1.1 什么是广播&#xff1f; 1.2 广播地址 1.3 广播的实现 2 组播 2.1 分类的IP地址 2.2 多播 IP 地址 2.3 组播的实现 1 广播 1.1 什么是广播&#xff1f; 数据包发送方式只有一个接受方&#xff0c;称为单播 如果同时发给局域网中的所有主机&#xff0…