A 上一个遍历的整数
模拟
class Solution {
public:
vector<int> lastVisitedIntegers(vector<string> &words) {
vector<int> res;
vector<int> li;
for (int i = 0, n = words.size(); i < n;) {
if (words[i] != "prev")
li.push_back(stoi(words[i++]));
else {
int j = i;
for (; j < n && words[j] == "prev"; j++) {
if (li.size() < j - i + 1)
res.push_back(-1);
else
res.push_back(li[li.size() - (j - i + 1)]);
}
i = j;
}
}
return res;
}
};
B 最长相邻不相等子序列 I
贪心:遍历 g r o u p s groups groups ,若当前元素不等于选择的上一个位置的元素,则将当前位置加入选择的位置子序列,最终返回选择的子序列在 w o r d s words words 对应下标的字符串序列
class Solution {
public:
vector<string> getWordsInLongestSubsequence(int n, vector<string> &words, vector<int> &groups) {
vector<int> ind;
for (int i = 0; i < n; i++)
if (ind.empty() || groups[i] != groups[ind.back()])
ind.push_back(i);
vector<string> res;
for (auto x: ind)
res.push_back(words[x]);
return res;
}
};
C 最长相邻不相等子序列 II
动态规划:设 p [ i ] p[i] p[i] 为以 i i i 结尾的满足题目所述条件的最长子序列的长度,求出 p p p 数组后,设 p [ i n d ] p[ind] p[ind] 为其最大值,则从 i n d ind ind 开始逆序求子序列中的各个元素。
class Solution {
public:
int comp_dis(string &a, string &b) {//计算字符串a和b的汉明距离
if (a.size() != b.size())
return -1;
int res = 0;
for (int i = 0; i < a.size(); i++)
if (a[i] != b[i])
res++;
return res;
}
vector<string> getWordsInLongestSubsequence(int n, vector<string> &words, vector<int> &groups) {
vector<int> p(n);
int d[n][n];
for (int i = 0; i < n; i++) {
p[i] = 1;
for (int j = 0; j < i; j++) {
if (groups[j] == groups[i])
continue;
d[i][j] = comp_dis(words[j], words[i]);
if (d[i][j] == 1)
p[i] = max(p[i], p[j] + 1);//子序列中j可能是i的上一个元素
}
}
int ind = 0;
for (int i = 1; i < n; i++)
if (p[i] > p[ind])
ind = i;
vector<string> res;
while (1) {//逆序求子序列中的各个元素
res.push_back(words[ind]);
if (p[ind] == 1)
break;
for (int j = 0; j < ind; j++)
if (groups[j] != groups[ind] && d[ind][j] == 1 && p[j] + 1 == p[ind]) {//j可以是最长子序列中ind的前一个元素
ind = j;
break;
}
}
reverse(res.begin(), res.end());
return res;
}
};
D 和带限制的子多重集合的数目
动态规划:设 c n t cnt cnt 表示 n u m s nums nums 中 v i vi vi 出现 c n t [ v i ] cnt[vi] cnt[vi] 次,设 p i , s p_{i,s} pi,s 为由 c n t cnt cnt 中前 i i i 个不同 v i vi vi 构成的和为 s s s 的多重集合的数目,有状态转移方程 p i , s = p i − 1 , s + p i − 1 , s − v i + ⋯ + p i − 1 , s − v i × c n t [ v i ] p_{i,s}=p_{i-1,s}+p_{i-1,s-vi}+\cdots+p_{i-1,s-vi\times cnt[vi]} pi,s=pi−1,s+pi−1,s−vi+⋯+pi−1,s−vi×cnt[vi] ,类似的有 p i , s − v i = p i − 1 , s − v i + ⋯ + p i − 1 , s − v i × ( c n t [ v i ] + 1 ) p_{i,s-vi}=p_{i-1,s-vi}+\cdots+p_{i-1,s-vi\times (cnt[vi]+1)} pi,s−vi=pi−1,s−vi+⋯+pi−1,s−vi×(cnt[vi]+1),合并一下可以得到 p i , s = p i , s − v i + p i − 1 , s − p i − 1 , s − v i × ( c n t [ v i ] + 1 ) p_{i,s}=p_{i,s-vi}+p_{i-1,s}-p_{i-1,s-vi\times(cnt[vi]+1)} pi,s=pi,s−vi+pi−1,s−pi−1,s−vi×(cnt[vi]+1),另外数组中的 0 0 0 需要单独处理,及答案为不考虑 0 0 0 时的答案 × ( c n t [ 0 ] + 1 ) \times (cnt[0]+1) ×(cnt[0]+1)。
class Solution {
public:
using ll = long long;
ll mod = 1e9 + 7;
map<int, int> cnt;
int sum_ = 0;
int c0 = 0;
int le(int mx) {//和不超过mx的子多重集合的数目
int n = cnt.size();
int p[n + 1][mx + 1];
memset(p, 0, sizeof(p));
p[0][0] = 1;
auto it = cnt.begin();
for (int i = 1; i <= n; i++) {
int vi = it->first, ci = it->second;
for (int s = 0; s <= mx; s++) {
p[i][s] = p[i - 1][s];
if (s - vi >= 0)
p[i][s] = (p[i][s] + p[i][s - vi]) % mod;
if (s - vi * (ci + 1) >= 0)
p[i][s] = (p[i][s] - p[i - 1][s - vi * (ci + 1)]) % mod;
}
it++;
}
ll res = 0;
for (int s = 0; s <= mx; s++)
res = (res + p[n][s]) % mod;
res = (res * (c0 + 1)) % mod;
return (res + mod) % mod;
}
int countSubMultisets(vector<int> &nums, int l, int r) {
for (auto x: nums) {
if (x)
cnt[x]++;
else
c0++;
sum_ += x;
}
int vr = le(r);
int vl = l != 0 ? le(l - 1) : 0;
return ((vr - vl) % mod + mod) % mod;
}
};