本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。
为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。
由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。
有一块木板,长度为 n
个 单位 。一些蚂蚁在木板上移动,每只蚂蚁都以 每秒一个单位 的速度移动。其中,一部分蚂蚁向 左 移动,其他蚂蚁向 右 移动。
当两只向 不同 方向移动的蚂蚁在某个点相遇时,它们会同时改变移动方向并继续移动。假设更改方向不会花费任何额外时间。
而当蚂蚁在某一时刻 t
到达木板的一端时,它立即从木板上掉下来。
给你一个整数 n
和两个整数数组 left
以及 right
。两个数组分别标识向左或者向右移动的蚂蚁在 t = 0
时的位置。请你返回最后一只蚂蚁从木板上掉下来的时刻。
示例 1:
输入:n = 4, left = [4,3], right = [0,1]
输出:4
解释:如上图所示:
-下标 0 处的蚂蚁命名为 A 并向右移动。
-下标 1 处的蚂蚁命名为 B 并向右移动。
-下标 3 处的蚂蚁命名为 C 并向左移动。
-下标 4 处的蚂蚁命名为 D 并向左移动。
请注意,蚂蚁在木板上的最后时刻是 t = 4 秒,之后蚂蚁立即从木板上掉下来。(也就是说在 t = 4.0000000001 时,木板上没有蚂蚁)。
示例 2:
输入:n = 7, left = [], right = [0,1,2,3,4,5,6,7]
输出:7
解释:所有蚂蚁都向右移动,下标为 0 的蚂蚁需要 7 秒才能从木板上掉落。
示例 3:
输入:n = 7, left = [0,1,2,3,4,5,6,7], right = []
输出:7
解释:所有蚂蚁都向左移动,下标为 7 的蚂蚁需要 7 秒才能从木板上掉落。
提示:
1 <= n <= 10^4
0 <= left.length <= n + 1
0 <= left[i] <= n
0 <= right.length <= n + 1
0 <= right[i] <= n
1 <= left.length + right.length <= n + 1
left
和right
中的所有值都是唯一的,并且每个值 只能出现在二者之一 中。
解法 脑筋急转弯
本题是2731. 移动机器人的前置。
当一只蚂蚁起始位置为 x x x ,方向往左,且往左移动过程不受其他影响时,其到达左边界所需时间为 x x x ;若方向往右,且往右移动过程不受其他影响时,其到达右边界所需时间为 n − x n - x n−x 。
蚂蚁之间的相遇,实际上并不会影响它们到达木板边缘的时间。两只相遇的蚂蚁只是简单地交换了彼此的移动方向,并没有影响到它们的移动步数,即两只蚂蚁相遇可视为身份互换。
因此,我们只需要分别计算每只蚂蚁单独掉落到木板边缘所需的时间,然后取最大值即可得到所有蚂蚁掉落的最后时刻。
class Solution {
public:
int getLastMoment(int n, vector<int>& left, vector<int>& right) {
return max(n -
(right.empty() ? n : *min_element(right.begin(), right.end())),
left.empty() ? 0 : *max_element(left.begin(), left.end())
);
}
};
复杂度分析:
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( 1 ) O(1) O(1)