Sentinel入门

news2025/1/11 20:39:01

文章目录

  • 初始Sentinel
    • 雪崩问题
    • 服务保护技术对比
    • 认识Sentinel
    • 微服务整合Sentinel
  • 限流规则
    • 快速入门
    • 流控模式
      • 关联模式
      • 链路模式
    • 流控效果
      • warm up
      • 排队等待
    • 热点参数限流
      • 全局参数限流
      • 热点参数限流
  • 隔离和降级
    • FeignClient整合Sentinel
    • 线程隔离
    • 熔断降级
      • 慢调用
      • 异常比例、异常数
  • 授权规则
    • 授权规则
      • 基本规则
      • 如何获取origin
      • 给网关添加请求头
    • 自定义异常
      • 异常类型
      • 自定义异常处理
  • 规则持久化
    • 实现Sentinel持久化

初始Sentinel

雪崩问题

微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩
在这里插入图片描述

解决雪崩问题的常见方式有四种:

  • 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
    在这里插入图片描述
  • 舱壁模式:限定每个业务能使用的线程数,避免耗尽整个Tomcat的资源,因此也叫线程隔离
    在这里插入图片描述
  • 熔断降级:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求
    在这里插入图片描述
  • 流量控制:限制业务访问的QPS,避免服务因流量的突增而故障
    在这里插入图片描述

服务保护技术对比

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动,匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
场景框架适配Servlet、Spring Cloud、Dubbo、gRPC等Servlet、Spring Cloud Netflix

认识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址

Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等
  • 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况
  • 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel
  • 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等

安装Sentinel

  • 下载:sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载
  • 将jar包放到任意非中文目录,执行命令:java -jar sentinel-dashboard-1.8.1.jar
  • 然后访问:localhost:8080即可看到控制台页面,默认的账户和密码都是sentinel
    在这里插入图片描述
    登录后,发现一片空白,什么都没有:这是因为我们还没有与微服务整合
    在这里插入图片描述

如果要修改Sentinel的默认端口、账户、密码、可以通过下列配置:
例如:java -Dserver.port=8088 -jar sentinel-dashboard-1.8.6.jar

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

微服务整合Sentinel

导入项目工程项目结构如下:
在这里插入图片描述


我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

  • 引入sentinel依赖

    <!--sentinel-->
    <dependency>
        <groupId>com.alibaba.cloud</groupId> 
        <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
    </dependency>
    
  • 配置控制台:修改application.yaml文件,添加下面内容:

    server:
      port: 8088
    spring:
      cloud: 
        sentinel:
          transport:
            dashboard: localhost:8080
    
  • 访问order-service的任意端点,触发sentinel监控

    • 打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控
    • 然后再访问sentinel的控制台,查看效果:
      在这里插入图片描述

限流规则

快速入门

簇点链路
簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
在这里插入图片描述

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。表单中可以添加流控规则,如下图所示:其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错
在这里插入图片描述

流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
    在这里插入图片描述

关联模式

  • 关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流
  • 满足下面条件可以使用关联模式
    • 两个有竞争关系的资源
    • 一个优先级较高,一个优先级较低
      在这里插入图片描述
      语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源

链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值

例如有两条请求链路:

  • /test1 --> /common
  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:
在这里插入图片描述

流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长
    在这里插入图片描述

warm up

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10
在这里插入图片描述

配置规则
在这里插入图片描述

排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常

配置规则
在这里插入图片描述

热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值

全局参数限流

例如,一个根据id查询商品的接口:
在这里插入图片描述
访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:
在这里插入图片描述
当id=1的请求触发阈值被限流时,id值不为1的请求不受影响

配置示例:
在这里插入图片描述
代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:
在这里插入图片描述
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPS为10
  • 如果参数值是101,则每1秒允许的QPS为15

隔离和降级

FeignClient整合Sentinel

虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了

不管是线程隔离还是熔断降级,都是对 客户端(调用方) 的保护
在这里插入图片描述


SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端必须整合Feign和Sentinel

  • 修改OrderService的application.yml文件,开启Feign的Sentinel功能:

    feign:
      sentinel:
        enabled: true # 开启feign对sentinel的支持
    
  • 给FeignClient编写失败后的降级逻辑

    • 方式一:FallbackClass,无法对远程调用的异常做处理
    • 方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

步骤一: 在feign-api项目中定义类,实现FallbackFactory:

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
    @Override
    public UserClient create(Throwable throwable) {
        return new UserClient() {
            @Override
            public User findByID(Long id) {
                log.error("查询用户异常", throwable);
                return new User();
            }

            
        };
    }
}

步骤二: 在feign-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
    return new UserClientFallbackFactory();
}

步骤三: 在feign-api项目中的UserClient接口中使用UserClientFallbackFactory:
在这里插入图片描述

线程隔离

线程隔离有两种方式实现:

  • 线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

  • 信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求

在这里插入图片描述


两者优缺点
在这里插入图片描述


线程隔离(舱壁模式)

在添加限流规则时,可以选择两种阈值类型:
在这里插入图片描述

  • QPS:就是每秒的请求数,在快速入门中已经演示过
  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现 线程隔离(舱壁模式)

熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由 断路器 统计服务调用的异常比例、慢请求比例,如果超出阈值则会 熔断 该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求
在这里插入图片描述
状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用异常比例异常数

慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:
在这里插入图片描述
解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试

异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断

例如,一个异常比例设置:
在这里插入图片描述
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:
在这里插入图片描述
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断

授权规则

授权规则可以对请求方来源做判断和控制

授权规则

基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式

  • 白名单:来源(origin)在白名单内的调用者允许访问
  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:
在这里插入图片描述

  • 资源名:就是受保护的资源,例如/order/{orderId}
  • 流控应用:是来源者的名单,
    • 如果是勾选白名单,则名单中的来源被许可访问
    • 如果是勾选黑名单,则名单中的来源被禁止访问

比如:我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)
在这里插入图片描述

如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的

public interface RequestOriginParser {
    /**
     * 从请求request对象中获取origin,获取方式自定义
     */
    String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回
默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:

@Component
public class HeaderOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest request) {
        // 1.获取请求头
        String origin = request.getHeader("origin");
        // 2.非空判断
        if (StringUtils.isEmpty(origin)) {
            origin = "blank";
        }
        return origin;
    }
}

我们会尝试从request-header中获取origin值

给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头
这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter

修改gateway服务中的application.yml,添加一个defaultFilter:

spring:
  cloud:
    gateway:
      default-filters:
        - AddRequestHeader=origin,gateway # 添加名为origin的请求头,值为gateway

这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头

自定义异常

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截

异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {
    /**
     * 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
     */
    void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象
  • HttpServletResponse response:response对象
  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:

@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        String msg = "未知异常";
        int status = 429;

        if (e instanceof FlowException) {
            msg = "请求被限流了";
        } else if (e instanceof ParamFlowException) {
            msg = "请求被热点参数限流";
        } else if (e instanceof DegradeException) {
            msg = "请求被降级了";
        } else if (e instanceof AuthorityException) {
            msg = "没有权限访问";
            status = 401;
        }

        response.setContentType("application/json;charset=utf-8");
        response.setStatus(status);
        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
    }
}

规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失

规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式

pull模式
pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则
在这里插入图片描述


push模式
push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新
在这里插入图片描述

实现Sentinel持久化

修改OrderService,让其监听Nacos中的sentinel规则配置

  • 引入依赖: 在order-service中引入sentinel监听nacos的依赖

    <dependency>
        <groupId>com.alibaba.csp</groupId>
        <artifactId>sentinel-datasource-nacos</artifactId>
    </dependency>
    
  • 配置nacos地址: 在order-service中的application.yml文件配置nacos地址及监听的配置信息

    spring:
      cloud:
        sentinel:
          datasource:
            flow:
              nacos:
                server-addr: localhost:8848 # nacos地址
                dataId: orderservice-flow-rules
                groupId: SENTINEL_GROUP
                rule-type: flow # 还可以是:degrade、authority、param-flow
    
  • 使用修改源代码的Sentinel

    • Sentinel修改教程
  • 启动方式跟官方一样:java -jar sentinel-dashboard.jar

  • 如果要修改nacos地址,需要添加参数:java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1067831.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MATLAB算法实战应用案例精讲-【优化算法】霸王龙优化算法(TROA)(附MATLAB代码实现)

前言 霸王龙优化算法(Tyrannosaurus optimization,TROA)由Venkata Satya Durga Manohar Sahu等人于2023年提出,该算法模拟霸王龙的狩猎行为,具有搜索速度快等优势。 霸王龙属于暴龙超科的暴龙属,是该属的唯一一种。1905年,美国古生物学家、美国艺术与科学院院士亨利奥…

iOS——仿写计算器

四则运算&#xff1a;中缀表达式转后缀表达式后缀表达式求值 实现四则运算的算法思路是&#xff1a;首先输入的是中缀表达式的字符串&#xff0c;然后将其转为计算机可以理解的后缀表达式&#xff0c;然后将后缀表达式求值&#xff1a; 中缀转后缀表达式思路参考&#xff1a;《…

竹云筑基,量子加密| 竹云携手国盾量子构建量子身份安全防护体系

9月23日-24日&#xff0c;2023量子产业大会在安徽合肥举行。作为量子科技领域行业盛会&#xff0c;2023年量子产业大会以“协同创新 量点未来”为主题&#xff0c;展示了前沿的量子信息技术、产业创新成果&#xff0c;并举办主旨论坛、量子科普讲座等系列专项活动。量子信息作为…

多种方案教你彻底解决mac npm install -g后仍然不行怎么办sudo: xxx: command not found

问题概述 某些时候我们成功执行了npm install -g xxx&#xff0c;但是执行完成以后&#xff0c;使用我们全局新安装的包依然不行&#xff0c;如何解决呢&#xff1f; 解决方案1&#xff1a; step1: 查看npm 全局文件安装地址 XXXCN_CXXXMD6M ~ % npm list -g …

45 二叉树的右视图

二叉树的右视图 题解1 层序遍历——BFS题解2 递归——DFS 给定一个二叉树的根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 提示: 二叉树的节点个数的范围是 [0,100]-100 < Node.val < 100 …

使用Docker安装Redis

一、如果虚拟机有redis运行则&#xff0c;关闭本地redis 1、查看redis是否运行 ps -ef | grep redis 2、 关闭本地redis redis-cli -a 123456 shutdown 3、如果需要启动本地redis #切换到redis目录 cd /opt/redis/bin redis-server redis.conf #关闭进程 kill [进程号] 二、…

element-plus自动引入组件报错,例如collapse、loading

element-plus自动引入组件&#xff0c;例如collapse、loading&#xff0c;使用时报错&#xff0c;报错信息如下图所示&#xff1a; 解决办法&#xff1a;vite-config.ts改变vue的引入顺序&#xff0c;将vue放在第一个

从0开始python学习-30.selenium frame子页面切换

目录 1. frame切换逻辑 2. 多层子页面情况进行切换 3. 多个子页面相互切换 1. frame切换逻辑 1.1. 子页面的类型一般分为两种 frame标签 iframe标签 1.2. 子页面里面的元素和主页面的元素是相互独立 子页面元素需要进去切换才能操作 如果已经进入子页面&#xff0c;那么…

[python 刷题] 3 Longest Substring Without Repeating Characters

[python 刷题] 3 Longest Substring Without Repeating Characters 题目&#xff1a; Given a string s, find the length of the longest substring without repeating characters. 这到提要求找的是最长的&#xff0c;没有重复符号的子字符串 解题思路是用双指针哈希表&…

华为云API自然语言处理的魅力—AI情感分析、文本分析

云服务、API、SDK&#xff0c;调试&#xff0c;查看&#xff0c;我都行 阅读短文您可以学习到&#xff1a;人工智能AI自言语言的情感分析、文本分词、文本翻译 1 IntelliJ IDEA 之API插件介绍 API插件支持 VS Code IDE、IntelliJ IDEA等平台、以及华为云自研 CodeArts IDE&a…

JDBC-day02(使用PreparedStatement实现CRUD操作)

所需的数据库数据要导入到自己的数据库库中 三&#xff1a;使用PreparedStatement实现CRUD操作 数据库连接被用于向数据库服务器发送命令和 SQL 语句&#xff0c;并接受数据库服务器返回的结果。其实一个数据库连接就是一个Socket连接。CRUD操作&#xff1a;根据返回值的有无…

Flink学习笔记(一):Flink重要概念和原理

文章目录 1、Flink 介绍2、Flink 概述3、Flink 组件介绍3.1、Deploy 物理部署层3.2、Runtime 核心层3.3、API&Libraries 层3.4、扩展库 4、Flink 四大基石4.1、Checkpoint4.2、State4.3、Time4.4、Window 5、Flink 的应用场景5.1、Event-driven Applications【事件驱动】5.…

Flink+Doris 实时数仓

Flink+Doris 实时数仓 Doris基本原理 Doris基本架构非常简单,只有FE(Frontend)、BE(Backend)两种角色,不依赖任何外部组件,对部署和运维非常友好。架构图如下 可以 看到Doris 的数仓架构十分简洁,不依赖 Hadoop 生态组件,构建及运维成本较低。 FE(Frontend)以 Java 语…

好奇喵 | PT(Private Tracker)——什么是P2P,什么是BT,啥子是PT?

前言 有时候会听到别人谈论pt&#xff0c;好奇猫病又犯了&#xff0c;啥子是pt&#xff1f; PT——你有pt吗&#xff1f;啥是pt&#xff1f; 从BT开始 BitTorrent是一种点对点&#xff08;P2P&#xff09;文件共享协议&#xff0c;用于高速下载和上传大型文件。它允许用户通…

【Oracle】Oracle系列十九--Oracle的体系结构

文章目录 往期回顾前言1. 物理结构2. 内存结构2.1 SGA2.2 后台进程 3. 逻辑结构 往期回顾 【Oracle】Oracle系列之一–Oracle数据类型 【Oracle】Oracle系列之二–Oracle数据字典 【Oracle】Oracle系列之三–Oracle字符集 【Oracle】Oracle系列之四–用户管理 【Oracle】Or…

Springboot项目log4j与logback的Jar包冲突问题

异常信息关键词&#xff1a; SLF4J: Class path contains multiple SLF4J bindings. ERROR in ch.qos.logback.core.joran.spi.Interpreter24:14 - no applicable action for [properties], current ElementPath is [[configuration][properties]] 详细异常信息&#xff1a…

【深度学习】UNIT-DDPM核心讲解

文章目录 大致介绍&#xff1a;扩散损失&#xff1a;转换损失&#xff1a;循环一致性损失&#xff1a;推理过程&#xff1a;优缺点&#xff1a; 参考文章&#xff1a; https://blog.csdn.net/ssshyeong/article/details/127210086 这篇文章对整个文章 UNIT-DDPM: UNpaired Imag…

Reactor 模式网络服务器【I/O多路复用】(C++实现)

前导&#xff1a;本文是 I/O 多路复用的升级和实践&#xff0c;如果想实现一个类似的服务器的话&#xff0c;需要事先学习 epoll 服务器的编写。 友情链接&#xff1a; 高级 I/O【Linux】 I/O 多路复用【Linux/网络】&#xff08;C实现 epoll、select 和 epoll 服务器&#x…

开发与运营:“开发”和“运营”角色有何不同和重叠?

开发和运营是促进软件系统交付的两种角色。大多数大规模构建软件的组织都会雇用这两个学科的人员。不过,开发和运维并不是完全孤立的。团队重叠并实现更高的吞吐量是很常见的。 在本文中,您将学习区分开发人员和操作人员之间的主要区别,以及它们重叠的方式。尽管有将两者结合…

Synchronized的实现和锁升级

1.JVM是如何处理和识别Synchronized的&#xff1f; 我们从字节码角度分析synchronized的实现&#xff1a; Synchronized(锁对象){}同步代码块底层实现方式是monitorenter和monitorexit指令。 修饰普通同步方法时底层实现方式是执行指令会检查方法是否设置ACC_SYNCHRONIZED&am…