深入理解 python 虚拟机:原来虚拟机是这么实现闭包的

news2025/1/11 22:39:20

深入理解 python 虚拟机:原来虚拟机是这么实现闭包的

在本篇文章当中主要从虚拟机层面讨论函数闭包是如何实现的,当能够从设计者的层面去理解闭包就再也不用死记硬背一些闭包的概念了,因为如果你理解闭包的设计原理之后,这些都是非常自然的。

根据 wiki 的描述,a closure is a record storing a function together with an environment。所谓闭包就是将函数和环境存储在一起的记录。这里有三个重点一个是函数,一个是环境(简单说来就是程序当中变量),最后一个需要将两者组合在一起所形成的东西,才叫做闭包。

Python 中的闭包

我们现在用一种更加直观的方式描述一下闭包:闭包是指在函数内部定义的函数,它可以访问外部函数的局部变量,并且可以在外部函数执行完后继续使用这些变量。这是因为闭包在创建时会捕获其所在作用域的变量,然后保持对这些变量的引用。下面是一个详细的Python闭包示例:

def outer_function(x):
    # 外部函数定义了一个局部变量 x

    def inner_function(y):
        # 内部函数可以访问外部函数的局部变量 x
        return x + y

    # 外部函数返回内部函数的引用,形成闭包
    return inner_function

# 创建两个闭包实例,分别使用不同的 x 值
closure1 = outer_function(10)
closure2 = outer_function(20)

# 调用闭包,它们仍然可以访问其所在外部函数的 x 变量
result1 = closure1(5)  # 计算 10 + 5,结果是 15
result2 = closure2(5)  # 计算 20 + 5,结果是 25

print(result1)
print(result2)

在上面的示例中,outer_function 是外部函数,它接受一个参数 x,然后定义了一个内部函数 inner_function,它接受另一个参数 y,并返回 x + y 的结果。当我们调用 outer_function 时,它返回了一个对 inner_function 的引用,形成了一个闭包。这个闭包可以保持对 x 的引用,即使 outer_function 已经执行完毕。

在上面的例子当中 outer_function 的返回值就是闭包,这个闭包包含函数和环境,函数是 inner_function ,环境就是 x,从程序语义的层面来说返回值是一个闭包,但是如果直接从 Python 层面来看,返回值也是一个函数,现在我们打印两个闭包看一下结果:

>>> print(closure1)
<function outer_function.<locals>.inner_function at 0x102e17a60>
>>> print(closure2)
<function outer_function.<locals>.inner_function at 0x1168bc430>

从上面的输出结果可以看到两个闭包(从 Python 层面来说也是函数)所在的内存地址是不一样的,因此每次调用都会返回一个不同的函数(闭包),因此两个闭包相互不影响。

再来看下面的程序,他们的执行结果是什么?

def outer_function(x):
	def inner_function(y):
		nonlocal x
		x += 1
		return x + y

	return inner_function


closure1 = outer_function(10)
closure2 = outer_function(20)

result1 = closure1(5)
print(result1)
result1 = closure1(5)
print(result1)
result2 = closure2(5)
print(result2)

输出结果为:

16
17
26

根据上面的分析 closure1 和 closure2 分别是两个不同的闭包,两个闭包的 x 也是各自的 x ,因此前一个闭包的 x 变化并不会影响第二个闭包,所以 result2 的输出结果为 26。

闭包相关的字节码

在正式了解闭包相关的字节码之前我们首先来重新回顾一下 CodeObject 当中的字段:

def outer_function(x):
	def inner_function(y):
		nonlocal x
		x += 1
		return x + y

	print(inner_function.__code__.co_freevars)  # ('x',)
	print(inner_function.__code__.co_cellvars)  # ()
	return inner_function


if __name__ == '__main__':
	out = outer_function(1)
	print(outer_function.__code__.co_freevars)  # ()
	print(outer_function.__code__.co_cellvars)  # ('x', )

cellvars 表示在其他函数当中会使用本地定义的变量,freevars 表示本地会使用其他函数定义的变量。在上面的例子当中,outer_function 当中的变量 x 会被 inner_function 使用,而cellvars 表示在其他函数当中会使用本地定义的变量,所以 outer_function 的这个字段为 (‘x’, )。如果要了解详细的信息可以参考这篇文章 深入理解 python 虚拟机:字节码灵魂——Code obejct 。

上面的内容我们简要回顾了一下 CodeObject 当中的两个非常重要的字段,这两个字段在进行传递参数的时候非常重要,当我们在进行函数调用的时候,虚拟机会新建一个栈帧,在进行新建栈帧的过程当中,如果发现 co_cellvars 存储的字符串变量也是函数参数的时候,除了会在局部变量当中保存一份参数之外,还会将传递过来的参数保存到栈帧对象的其他位置当中(这里需要注意一下,CodeObject 当中的 co_freevars 保存的是字符串,也就是变量名,栈帧当中保存的是变量名字对应的真实对象,也就是函数参数),这么做的目的是为了方面后面字节码 LOAD_CLOSURE 的操作,因为实际虚拟机存储的是指向对象的指针,因此浪费不了多少空间。

实际在虚拟机的栈帧对象当中 freevars 是一个数组,后续的字节码都是会根据数组下标对这些变量进行操作。

下面我们分析一下和闭包相关的字节码操作

def outer_function(x):
	def inner_function(y):
		nonlocal x
		x += 1
		return x + y

	return inner_function


if __name__ == '__main__':
	import dis

	dis.dis(outer_function)

上面的代码回输出 outer_function 和 inner_function 对应的字节码:

  2           0 LOAD_CLOSURE             0 (x)
              2 BUILD_TUPLE              1
              4 LOAD_CONST               1 (<code object inner_function at 0x100757a80, file "closure_bytecode.py", line 2>)
              6 LOAD_CONST               2 ('outer_function.<locals>.inner_function')
              8 MAKE_FUNCTION            8 (closure)
             10 STORE_FAST               1 (inner_function)

  7          12 LOAD_FAST                1 (inner_function)
             14 RETURN_VALUE

Disassembly of <code object inner_function at 0x100757a80, file "closure_bytecode.py", line 2>:
  4           0 LOAD_DEREF               0 (x)
              2 LOAD_CONST               1 (1)
              4 INPLACE_ADD
              6 STORE_DEREF              0 (x)

  5           8 LOAD_DEREF               0 (x)
             10 LOAD_FAST                0 (y)
             12 BINARY_ADD
             14 RETURN_VALUE

我们现在来详细解释一下上面的字节码含义:

  • LOAD_CLOSURE:这个就是从栈帧对象当中加载指定下标的 cellvars 变量,在上面的字节码当中就是加载栈帧对象 cellvars 当中下标为 0 的对象,对应的参数就是 x 。也就是将参数 x 加载到栈帧上。
  • BUILD_TUPLE:从栈帧当中弹出 oparg (字节码参数) 个参数,并且将这些参数封装成元祖,在上面的程序当中 oparg = 1 。
  • LOAD_CONST:加载对应的常量到栈帧当中,这里是会加载两个常量,分别是函数对应的 CodeObject 和函数名。

在执行完上的字节码之后栈帧当中 valuestack 如下所示:

  • MAKE_FUNCTION:这条字节码的主要作用是根据上面三个栈里面的对象创建一个函数,其中最重要的字段就是 CodeObject 这里面保存了函数最重要的代码,最下面的元祖就是 inner_function 的 freevars,当虚拟机在创建函数的时候就已经把这个对象保存下来了,然后在创建栈帧的时候会将这个对象保存到栈帧。需要注意的是这里所保存的变量就是函数参数 x,他们是同一个对象。这就使得内部函数每次调用的时候都可以使用参数 x 。

我们再来看一下函数 inner_function 的字节码

  • LOAD_DEREF:这个字节码会从栈帧的 freevars 数组当中加载下标为 oparg 的对象,freevars 就是刚刚在创建函数的时候所保存的,也就是 outter_function 传递给 inner_function 的元祖。直观的来说就是将外部函数的 x 加载到 valuestack 当中。
  • STORE_DEREF:就是将栈顶的元素弹出,保存到 cellvars 数组对应的下标 (oparg) 当中。

后续的字节码就很简单了,这里不做详细分析了。

如果上面的过程太复杂,我们在这里从整体的角度再叙述一下,简单说来就是当有代码调用 outer_function 的时候,传递进来的参数,会在 outer_function 创建函数 inner_function 的时候当作闭包参数传递给 inner_function,这样 inner_function 就能够使用 outer_function 的参数了,因此这也不难理解,每次我们调用函数 outer_function 都会返回一个新的闭包(实际就是返回的新创建的函数),因为我们每次调用函数 outer_function 时,它都会创建一个新的函数,而这些被创建的函数唯一的区别就是他们的闭包参数不同。这也就解释了再之前的例子当中为什么两个闭包他们互不影响,因为函数 outer_function 创建了两个不同的函数。

总结

在本篇文章当中详细介绍了闭包的使用例子和使用原理,理解闭包最重要的一点就是函数和环境,也就是和函数绑定在一起的变量。当进行函数调用的时候函数就会创建一个新的内部函数,也就是闭包。在虚拟机内部实现闭包主要是通过函数参数传递和函数生成实现的,当执行 MAKE_FUNCTION 创建新函数的时候,会将外部函数的闭包变量 (在文章中就是 x ) 传递给内部函数,然后保存在内部函数当中,之后的每一次调用都是用这个变量,从而实现闭包的效果。


本篇文章是深入理解 python 虚拟机系列文章之一,文章地址:https://github.com/Chang-LeHung/dive-into-cpython

更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1065890.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

嵌入式学习笔记(48)什么是I2C通信

10.1.1物理接口&#xff1a;SCL SDA (1)SCL&#xff1a;时钟线&#xff0c;传输CLK&#xff0c;一般是I2C主设备向从设备提供时钟的通道。 (2)SDA&#xff1a;数据线&#xff0c;通信数据都通过SDA线传输。 10.1.2通信特征&#xff1a;串行、同步、非差分、低速 (1)I2C属于…

Python中的多态

迷途小书童 读完需要 3分钟 速读仅需 1 分钟 当我们谈到多态时&#xff0c;可以将其比喻为一个人具有多种身份的能力。在不同的情境下&#xff0c;这个人可以表现出不同的行为和特征。在 Python 中&#xff0c;多态是面向对象编程中的一个重要概念&#xff0c;它允许我们使用相…

PHP 伪协议:使用 php://filter 为数据流应用过滤器

文章目录 参考环境PHP 伪协议概念为什么需要 PHP 伪协议&#xff1f; php://filter概念格式 基本使用普通读写file_get_contents 与 file_put_contentsinclude 过滤器的基本使用base64 的编码与解码rot13 加解密rot13 算法string.rot13 过滤器列表多个过滤器的使用注意事项 处理…

【软件测试】功能测试/接口测试/自动化测试/性能测试/验收测试

软件测试的主要流程 一、测试主要的四个阶段 1.测试计划设计阶段&#xff1a;产品立项之后&#xff0c;进行需求分析&#xff0c;需求评审&#xff0c;业务需求评级&#xff0c;绘制业务流程图。确定测试负责人&#xff0c;开始制定测试计划&#xff1b; 2.测试准备阶段&…

【每日一题】股票价格跨度

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;暴力枚举方法二&#xff1a;单调栈 写在最后 Tag 【单调栈】【设计类】【数组】【2023-10-07】 题目来源 901. 股票价格跨度 题目解读 找出小于等于今天股票价格的最大连续天数&#xff08;从今天往回数&#xff0c;…

AI颠覆法律行业,律师要失业了?

如果要说一个 AI 真正起飞&#xff0c;并且对行业从业者带来的更多是正面影响的垂直行业&#xff0c;小编觉得在目前阶段&#xff0c;法律可以算一个。这个行业有几个特点&#xff1a;对人的依赖很大&#xff0c;专业性很强&#xff0c;大量繁复的文字工作。因此&#xff0c;在…

水土保持方案编制丨点型项目、市政工程、线型工程、矿山工程、水利工程、取土场/弃渣场、补报项目、水土保持监测验收等

目录 专题一 点型水土保持方案编制方法及案例分析 专题二 市政工程水土保持方案编制方法及案例分析 专题三 线型工程水土保持方案编制方法及案例分析 专题四 矿山工程水土保持方案编制方法及案例分析 专题五 水利工程水土保持方案编制方法及案例分析 专题六 取土场、弃渣…

电影产业的数据洞察:爬虫技术在票房分析中的应用

概述 电影产业是一个庞大而复杂的行业&#xff0c;涉及到各种各样的因素&#xff0c;如导演、演员、类型、主题、预算、宣传、口碑、评分、奖项等。这些因素都会影响电影的票房收入&#xff0c;也会反映出电影市场的动态和趋势。为了更好地了解电影产业的数据洞察&#xff0c;…

Python机器学习实战-特征重要性分析方法(6):XGBoost(附源码和实现效果)

实现功能 计算一个特性用于跨所有树拆分数据的次数。更多的分裂意味着更重要。 实现代码 import xgboost as xgb import pandas as pd from sklearn.datasets import load_breast_cancer import matplotlib.pyplot as pltX, y load_breast_cancer(return_X_yTrue) df pd.D…

CMMI5认证哪些企业可以申请

CMMI5认证哪些企业可以申请 什么是CMMI5认证 CMMI&#xff08;Capability Maturity Model Integration&#xff09;是一种用于评估组织的软件工程能力的国际标准。CMMI模型包括5个等级&#xff0c;其中CMMI5是最高等级&#xff0c;代表组织具有达到持续优化和创新的能力。获得…

源码编译dotnetcore的runtime

为了dotnetcore运行时的安可目标&#xff0c;特意在国庆假期研究了怎么编译dotnetcore的runtime。由于我们用的是.net6&#xff0c;最新的是8&#xff0c;所以从github下载的.net6的分支代码进行的编译。查遍了国内外资料&#xff0c;估计微软服务太体贴了&#xff0c;竟然没什…

关于 “高可用集群” 的 从业经验漫谈

关于高可用集群 PART 1 高可用的概念 高可用&#xff08;High Availability&#xff09;是高可用集群&#xff08;High Availability Cluster&#xff09;的简称&#xff0c;至少由2台服务器组成&#xff0c;一般指的是应用服务对客户端的持续可用。高可用集群可以借助多种技术…

SuperMap:开启地理信息的无限可能

文章目录 引言简介SuperMapSuperMap的背景和发展SuperMap的功能特点 SuperMap的应用案例城市规划与管理天气预报与灾害管理物流与运输管理地理信息服务 最佳实践与技巧数据准备与处理地图制作与展示空间分析与决策 展望未来结论 引言 随着现代社会的发展&#xff0c;地理信息系…

CentOS Integration SIG 正式成立

导读CentOS 董事会已批准成立 CentOS Integration Special Interest Group (SIG)。该小组旨在帮助那些在 Red Hat Enterprise Linux (RHEL) 或特别是其上游 CentOS Stream 上构建产品和服务的人员&#xff0c;验证其能否在未来版本中继续运行。 红帽 RHEL CI 工程师 Aleksandr…

性能测试?

目录 一、什么是性能测试 二、系统性能指标 2.1 响应时间 2.2 系统处理能力 2.3 吞吐量 2.4 并发用户数 2.5 错误率 三、资源性能指标 3.1 CPU 3.2 内存 3.3 磁盘吞吐量 3.4 网络吞吐量 四、中间件指标 五、数据库指标 六、稳定性指标 一、什么是性能测试 先看…

PageRank(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

为何说医疗器械售后前景呈持续发展趋势?

为何说医疗器械售后前景呈持续发展趋势&#xff1f;如果医院的设备突然不运转了无法工作了&#xff0c;医院如果不及时维修&#xff0c;一天下来不仅患者有生命危险&#xff0c;医院的经济损失也不可估量&#xff0c;但是你知道这些医院的这些设备是怎么维修的吗&#xff1f;医…

淘宝商品数据分析接口,淘宝商品详情数据接口

淘宝商品数据分析接口可以通过淘宝API进行获取。 淘宝API是一种程序接口&#xff0c;通过编程的方式&#xff0c;让开发者能够通过HTTP协议直接访问淘宝平台的数据&#xff0c;包括商品信息、店铺信息、物流信息等&#xff0c;从而实现淘宝平台的数据开放。 通过淘宝API提供的…

钡铼BL302与PLC:酿酒业变革的助力

啤酒是人类非常古老的酒精饮料&#xff0c;是水和茶之后世界上消耗量排名第三的饮料。 啤酒在生产过程中主要有制造麦芽、粉碎原料、糖化、发酵、贮酒後熟、过滤、灌装包装等工序流程。需要用到风选机、筛分机、糖化锅、发酵设备、过滤机、灌装机、包装机等食品机械设备。这些食…