micro-ROS中对消息的内存管理

news2025/1/16 2:59:06

文章目录

  • 1.背景
  • 2.答案
    • 2.1.基本类型及其数组,不需要
    • 2.1.序列类型(复合类型、复合序列类型),需要
  • 3.内存申请方法
    • 3.1.手动申请(Manual allocation)
    • 3.1.工具辅助(micro-ROS utilities)
      • 3.1.1.规则的定义
      • 3.1.2.规则的使用

1.背景

我在之前的一篇文章【在VSCode下利用PlateFormIO开发Arduino的MicroROS遇到的一些问题】中的第10点中,提到一个问题:为啥在使用自定义消息类型时,有时候需要调用 micro_ros_utilities_create_message_memory 函数来对消息对象进行内存申请,而有时候不用呢?

2.答案

其实答案就在这篇官方的指导/说明文章中:【Handling messages memory in micro-ROS】

是否需要对消息类型进行内存申请,取决于消息的成员类型。

2.1.基本类型及其数组,不需要

假如你的消息的成员类型是基本类型(Basic type)及其数组类型(Array type),比如bool、byte、char、float32,bool[n]、byte[n]、char[n]、float32[n]等等,那就不用额外进行内存申请的操作,因为这些基本类型在实例化时就已经明确了空间大小,系统直接帮忙分配好了内存。

bool bool_test
byte byte_test
char char_test
float32 float32_test
float64 double_test
int8 int8_test
uint8 uint8_test
int16 int16_test
uint16 uint16_test
int32 int32_test
uint32 uint32_test
int64 int64_test
uint64 uint64_test

2.1.序列类型(复合类型、复合序列类型),需要

但是,假如消息的成员类型为:序列类型(Sequence type)、包含序列的复合类型(Compound type)、复合序列类型(Sequences of compound types),那就需要手动申请内存空间了。当然,假如复合类型中的成员全是基本类型,那也不用手动申请。
上面提到的这些类型,之所以需要人为去申请内存,原因很简单:系统不知道你要多大的空间。
就拿int32的序列int32[](注意,这个不是数组类型,中括号中间没有具体的数值)来说,在micro-ROS中,该类型经过解析后,得到的是这样一个结构体:

typedef struct rosidl_runtime_c__int32__Sequence
{
  int32_t* data;    /* The pointer to an array of int32 */
  size_t size;      /* The number of valid items in data */
  size_t capacity;  /* The number of allocated items in data */
} rosidl_runtime_c__int32__Sequence;

由于size、capacity都是未知的,那么系统如何知道要申请多大的内存空间并把指针值赋予data呢?
因此需要程序员自己手动申请并赋值一下。(这里解释一下上述结构体中的size、capacity的区别,类比电池的话,size表示剩余电量/可用电量,capacity表示电池总容量。这样设计,估计是为了在实例化一次这个对象后,能够对这个对象反复利用)

3.内存申请方法

在这个【Handling messages memory in micro-ROS】文章中提到,在micro-ROS中处理消息的内存有两种方式:手动申请(Manual allocation)、辅助申请(micro-ROS utilities)。

3.1.手动申请(Manual allocation)

这个就是要求对数据结构的各个成员进行数据填充、内存分配。比如对上面的rosidl_runtime_c__int32__Sequence类型,可以这样子初始化:

rosidl_runtime_c__int32__Sequence values;

values.capacity = 100;
values.data = (int32_t*) malloc(mymsg.values.capacity * sizeof(int32_t));
values.size = 0;

这样子操作比较繁琐,更好的是下面的方法。

3.1.工具辅助(micro-ROS utilities)

在micro-ROS中,官方提供了一些函数及结构,可以让我们相对便捷地对消息类型进行内存管理。
这里看一下例子:

mypackage__msg__MyComplexType mymsg;

static micro_ros_utilities_memory_conf_t conf = {0};

micro_ros_utilities_memory_rule_t rules[] = {
  {"multiheaders", 4},
  {"multiheaders.frame_id", 60},
  {"name", 10}
};
conf.rules = rules;
conf.n_rules = sizeof(rules) / sizeof(rules[0]);

// member named "values" of MyComplexType will have the default max_basic_type_sequence_capacity

bool success = micro_ros_utilities_create_message_memory(
  ROSIDL_GET_MSG_TYPE_SUPPORT(mypackage, msg, MyComplexType),
  &mymsg,
  conf
);

其中,mypackage__msg__MyComplexType类型是这样子的:

typedef struct mypackage__msg__MyComplexType
{
  std_msgs__msg__Header__Sequence multiheaders;
  rosidl_runtime_c__int32__Sequence values;
  double duration;
  int8 coefficients[10];
  rosidl_runtime_c__String name;  // equal to rosidl_runtime_c__char__Sequence
} mypackage__msg__MyComplexType;

header的类型是这样的:

typedef struct std_msgs__msg__Header
{
  builtin_interfaces__msg__Time stamp;
  rosidl_runtime_c__String frame_id;
} std_msgs__msg__Header;

3.1.1.规则的定义

可以看到,针对mypackage__msg__MyComplexType的成员multiheaders,指定下面的内存申请规则:

...
micro_ros_utilities_memory_rule_t rules[] = {
  {"multiheaders", 4}, // 对序列进行长度(capacity)的申请
  {"multiheaders.frame_id", 60}, // frame_id是字符串,进行60字节的申请
  ...
};
...

rule的具体的写法应该是

 {"对象成员名称",  Sequence的capacity大小}

在这里插入图片描述

需要注意的是,序列成员的成员可以直接写,而不用序列号,比如上面的"multiheaders.frame_id"就不用写成"multiheaders.data[0].frame_id"之类的。

另外,对于未在rules中指定的序列类型成员,会按照micro_ros_utilities_memory_conf_t的max_string_capacity、max_ros2_type_sequence_capacity、max_basic_type_sequence_capacity来进行申请,假如需要覆盖默认值micro_ros_utilities_memory_conf_default,可以这样操作:

static micro_ros_utilities_memory_conf_t conf = {0};

conf.max_string_capacity = 50;
conf.max_ros2_type_sequence_capacity = 5;
conf.max_basic_type_sequence_capacity = 5;

3.1.2.规则的使用

定义好规则之后,当调用 micro_ros_utilities_create_message_memory 函数时,应该是对Sequence类型的capacity进行赋值,然后再根据此capacity进行实际内存的计算+申请。(可能会涉及递归过程?)
大概看一下源码,应该是的。具体实现过程有空再分析分析。
在这里插入图片描述


参考:
【Handling messages memory in micro-ROS】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1065138.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

css入门知识点

CSS&#xff08;层叠样式表&#xff09;完整知识点 1. 什么是CSS&#xff1f; <a id"what-is-css"></a> CSS是一种用于描述网页上元素样式和布局的样式表语言。它使开发人员能够控制网页的外观和排版&#xff0c;从而提供更好的用户体验。 2. CSS基础…

基于毫米波雷达的可行驶区域检测(Freespace)

说明 随着具备测高能力、更高角度分辨率、更远检测范围的4D毫米波雷达的出现&#xff0c;很多之前只能用摄像头/激光雷达做的事毫米波雷达也开始涉足(并且可以做得很好)&#xff1a;比如目标识别、SLAM、以及本博文将要讨论的可行驶区域检测(Freespace)。以往(至少是我个人)对于…

一、动态规划简单实例

【题目】 当我们给定一个简单序列[1、5、2、4、3]&#xff0c;现在要求输出该序列中&#xff0c;最大子序列的长度&#xff0c;子序列要求从小到大&#xff0c;元素下标可以跳跃&#xff0c;例如子序列[1、2、3]。 【实现方式(暴力实现)】 1、先定义一个函数L(nums,i)&#x…

C# 给某个方法设定执行超时时间

C# 给某个方法设定执行超时时间在某些情况下(例如通过网络访问数据)&#xff0c;常常不希望程序卡住而占用太多时间以至于造成界面假死。 在这时、我们可以通过Thread、Thread Invoke&#xff08;UI&#xff09;或者是 delegate.BeginInvoke 来避免界面假死&#xff0c; 但是…

RocketMQ 基于时间轮算法实现指定时间点的定时消息原理解析

在 RocketMQ 4.x 版本&#xff0c;使用延时消息来实现消息的定时消费。延时消息可以一定程度上实现定时发送&#xff0c;但是有一些局限。 RocketMQ 新版本基于时间轮算法引入了定时消息&#xff0c;目前&#xff0c;精确到秒级的定时消息实现的 pr 已经提交到社区&#xff0c…

unity中绑定动画的行为系统

主要代码逻辑是创建一个action队列,当动画播放结束时就移除队头,执行后面的事件 public class Enemy : MonoBehaviour {public event Action E_AnimatorFin;//当动画播放完毕时public Action DefaultAction;//默认事件public Dictionary<Action, string> EventAnimator n…

数据科学最佳实践:Kedro 的工程化解决方案 | 开源日报 No.47

leonardomso/33-js-concepts Stars: 58.4k License: MIT 这个项目是一个帮助开发者掌握 JavaScript 概念的资源库。该项目基于 Stephen Curtis 撰写的一篇文章&#xff0c;包含了对 33 个重要 JavaScript 概念全面深入地讲解&#xff0c;并被 GitHub 评为 2018 年最佳开源项目…

Python Random模块详解

Random模块详解 随机数 random模块 randint(a, b) 返回[a, b]之间的整数randrange ([start,] stop [,step]) 从指定范围内&#xff0c;按指定基数递增的集合中获取一个随机数&#xff0c;基数 缺省值为1。random.randrange(1,7,2)choice(seq) 从非空序列的元素中随机挑选一个…

驱动器类产品的接口EMC拓扑方案

驱动器类产品的接口EMC拓扑方案 1. 概述 本文以高压伺服驱动器和变频器类产品为例&#xff0c;对常用端口滤波拓扑方案进行总结&#xff0c;后续根据不同的应用场景可进行适当删减&#xff0c;希望对大家有帮助。 2. 驱动器验证等级 本文推荐拓扑的实验结果&#xff0c;满足…

Ps:选择并遮住

选择并遮住 Select and Mask主要用来提高选区边缘的品质&#xff0c;尤其在毛发等复杂边缘的抠图上发挥强大的作用。 Ps菜单&#xff1a;选择/选择并遮住 Select and Mask 快捷键&#xff1a;Ctrl Alt R 在所有选区工具的工具选项栏上以及图层蒙版的属性面板中都可以看到“选…

NAT+ACL+mstp小综合

三、实验一相关知识点 1&#xff0c;实验&#xff1a;NAT 综合实验 2&#xff0c;拓扑&#xff1a; 3&#xff0c;需求: 1&#xff09;&#xff0c;实现VLAN20 的除了20这台主机以外所有主机上网访问外网 2&#xff09;&#xff0c;实现VLAN30 的主机为奇数电脑上网 3&#…

详解C语言—预处理

目录 1、预处理 (1)预定义符号介绍 (2)预处理指令 #define #define 定义标识符&#xff1a; #define 定义宏&#xff1a; #define 替换规则 (3)预处理操作符# (4)预处理操作符## (5)带副作用的宏参数 (6)宏和函数对比 2、命名约定 3、预处理指令 #undef 4、命令行定…

用 Pytorch 自己构建一个Transformer

一、说明 用pytorch自己构建一个transformer并不是难事,本篇使用pytorch随机生成五千个32位数的词向量做为源语言词表,再生成五千个32位数的词向量做为目标语言词表,让它们模拟翻译过程,transformer全部用pytorch实现,具备一定实战意义。 二、论文和概要 …

mac连接easyconnnect显示“本地环境出现异常”

mac连接easyconnnect显示“本地环境出现异常” 解决方法&#xff1a; 终端下输入&#xff1a;vim ~/.zprofile文件内加入如下内容&#xff0c;如下图&#xff1a; ####解决连接easyconnnect显示“本地环境出现异常问题 function EC_start(){/Applications/EasyConnect.app/Co…

学信息系统项目管理师第4版系列19_质量管理

1. 公差 1.1. 质量测量中公差是测量指标的可允许变动范围&#xff0c;而不是实际测量值与预期值的差 1.1.1. 【高22下选35】 1.2. 结果的的可接受范围 2. 控制界限 2.1. 统计意义上稳定的过程或过程绩效的普通偏差的边界 3. 3版 3.1. 质量控制新七工具 3.1.1. 【高19下…

cpp primer笔记070-算法函数

accumulate的第三个参数的类型决定了函数中使用哪个加法运算符以及返回值的类型&#xff0c;如果返回值是自定义类型&#xff0c;需要使用accumlate&#xff0c;则需要重载运算符&#xff0c;该接口的第三个参数返回的是一个需要处理的数据类型的一个变量。 std::vector<std…

蓝桥等考Python组别十四级001

第一部分&#xff1a;选择题 1、Python L14 &#xff08;15分&#xff09; 运行下面程序&#xff0c;输出的结果是&#xff08; &#xff09;。 d {A: 501, B: 602, C: 703, D: 804} print(d[B]) 501602703804 正确答案&#xff1a;B 2、Python L14 &#xff08;15分…

吃鸡高手必备工具大揭秘!提高战斗力,分享干货,一站满足!

大家好&#xff01;你是否想提高吃鸡游戏的战斗力&#xff0c;分享顶级的游戏作战干货&#xff0c;方便进行吃鸡作图和查询装备皮肤库存&#xff1f;是否也担心被骗&#xff0c;希望查询游戏账号是否在黑名单上&#xff0c;或者查询失信人和VAC封禁情况&#xff1f;在这段视频中…

System Generator学习——使用 AXI 接口和 IP 集成器

文章目录 前言一、目标二、步骤1、检查 AXI 接口2、使用 System Generator IP 创建一个 Vivado 项目3、创建 IP 集成设计&#xff08;IPI&#xff09;4、实现设计 总结 前言 在本节中&#xff0c;将学习如何使用 System Generator 实现 AXI 接口。将以 IP 目录格式保存设计&am…

「专题速递」回声消除算法、低功耗音频、座舱音频系统、智能音频技术、低延时音效算法、手机外放增强算法...

随着多媒体和通信网络技术的持续升级&#xff0c;以及新型音视频应用场景的不断涌现&#xff0c;音频处理技术正朝着更加智能化和沉浸化的方向迅猛发展。人们对音频听觉体验的要求也逐渐提高&#xff0c;无论是在何种场景下&#xff0c;都期望获得更加清晰的声音&#xff0c;并…