【Java项目推荐之黑马头条】CSDN中的定时发布知道吧,你项目中的定时发布是如何实现的?

news2025/1/20 14:59:48

延迟队列精准发布文章

文章定时发布

延迟任务概述

什么是延迟任务
  • 定时任务:有固定周期的,有明确的触发时间
  • 延迟队列:没有固定的开始时间,它常常是由一个事件触发的,而在这个事件触发之后的一段时间内触发另一个事件,任务可以立即执行,也可以延迟

image-20230217123018543

应用场景:

场景一:订单下单之后30分钟后,如果用户没有付钱,则系统自动取消订单;如果期间下单成功,任务取消

场景二:接口对接出现网络问题,1分钟后重试,如果失败,2分钟重试,直到出现阈值终止

技术对比
DelayQueue

JDK自带DelayQueue 是一个支持延时获取元素的阻塞队列, 内部采用优先队列 PriorityQueue 存储元素,同时元素必须实现 Delayed 接口;在创建元素时可以指定多久才可以从队列中获取当前元素,只有在延迟期满时才能从队列中提取元素

image-20230217123030266

DelayQueue属于排序队列,它的特殊之处在于队列的元素必须实现Delayed接口,该接口需要实现compareTo和getDelay方法

getDelay方法:获取元素在队列中的剩余时间,只有当剩余时间为0时元素才可以出队列。

compareTo方法:用于排序,确定元素出队列的顺序。

实现:

1:在测试包jdk下创建延迟任务元素对象DelayedTask,实现compareTo和getDelay方法,

2:在main方法中创建DelayQueue并向延迟队列中添加三个延迟任务,

3:循环的从延迟队列中拉取任务

public class DelayedTask  implements Delayed{
    
    // 任务的执行时间
    private int executeTime = 0;
    
    public DelayedTask(int delay){
        Calendar calendar = Calendar.getInstance();
        calendar.add(Calendar.SECOND,delay);
        this.executeTime = (int)(calendar.getTimeInMillis() /1000 );
    }

    /**
     * 元素在队列中的剩余时间
     * @param unit
     * @return
     */
    @Override
    public long getDelay(TimeUnit unit) {
        Calendar calendar = Calendar.getInstance();
        return executeTime - (calendar.getTimeInMillis()/1000);
    }

    /**
     * 元素排序
     * @param o
     * @return
     */
    @Override
    public int compareTo(Delayed o) {
        long val = this.getDelay(TimeUnit.NANOSECONDS) - o.getDelay(TimeUnit.NANOSECONDS);
        return val == 0 ? 0 : ( val < 0 ? -1: 1 );
    }


    public static void main(String[] args) {
        DelayQueue<DelayedTask> queue = new DelayQueue<DelayedTask>();
        
        queue.add(new DelayedTask(5));
        queue.add(new DelayedTask(10));
        queue.add(new DelayedTask(15));

        System.out.println(System.currentTimeMillis()/1000+" start consume ");
        while(queue.size() != 0){
            DelayedTask delayedTask = queue.poll();
            if(delayedTask !=null ){
                System.out.println(System.currentTimeMillis()/1000+" cosume task");
            }
            //每隔一秒消费一次
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }     
    }
}

DelayQueue实现完成之后思考一个问题:

使用线程池或者原生DelayQueue程序挂掉之后,任务都是放在内存,需要考虑未处理消息的丢失带来的影响,如何保证数据不丢失,需要持久化(磁盘)

RabbitMQ实现延迟任务
  • TTL:Time To Live (消息存活时间)

  • 死信队列:Dead Letter Exchange(死信交换机),当消息成为Dead message后,可以重新发送另一个交换机(死信交换机)

image-20230217123113502

redis实现

zset数据类型的去重有序(分数排序)特点进行延迟。例如:时间戳作为score进行排序

image-20230217123139869

redis实现延迟任务

实现思路

image-20230217123149946

问题思路

1.为什么任务需要存储在数据库中?

延迟任务是一个通用的服务,任何需要延迟得任务都可以调用该服务,需要考虑数据持久化的问题,存储数据库中是一种数据安全的考虑。

2.为什么redis中使用两种数据类型,list和zset?

  • list存储立即执行的任务,zset存储未来的存储数据

  • 任务量过大后,zset的性能会下降

image-20230217123639908

效率问题,算法的时间复杂度

3.在添加zset数据的时候,为什么需要预加载?

任务模块是一个通用的模块,项目中任何需要延迟队列的地方,都可以调用这个接口,要考虑到数据量的问题,如果数据量特别大,为了防止阻塞,只需要把未来几分钟要执行的数据存入缓存即可。

延迟任务是一个通用的服务,任何需要延迟得任务都可以调用该服务,需要考虑数据持久化的问题,存储数据库中是一种数据安全的考虑。

2.为什么redis中使用两种数据类型,list和zset?

效率问题,算法的时间复杂度

延迟任务服务实现

搭建heima-leadnews-schedule模块

leadnews-schedule是一个通用的服务,单独创建模块来管理任何类型的延迟任务

①:导入资料文件夹下的heima-leadnews-schedule模块到heima-leadnews-service下

②:添加bootstrap.yml

server:
  port: 51701
spring:
  application:
    name: leadnews-schedule
  cloud:
    nacos:
      discovery:
        server-addr: 192.168.200.130:8848
      config:
        server-addr: 192.168.200.130:8848
        file-extension: yml

③:在nacos中添加对应配置,并添加数据库及mybatis-plus的配置

spring:
  datasource:
    driver-class-name: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/leadnews_schedule?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC
    username: root
    password: root
# 设置Mapper接口所对应的XML文件位置,如果你在Mapper接口中有自定义方法,需要进行该配置
mybatis-plus:
  mapper-locations: classpath*:mapper/*.xml
  # 设置别名包扫描路径,通过该属性可以给包中的类注册别名
  type-aliases-package: com.heima.model.schedule.pojos
数据库准备

导入资料中leadnews_schedule数据库

taskinfo 任务表

image-20230217153738709

实体类

package com.heima.model.schedule.pojos;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;

import java.io.Serializable;
import java.util.Date;

/**
 * <p>
 * 
 * </p>
 *
 * @author itheima
 */
@Data
@TableName("taskinfo")
public class Taskinfo implements Serializable {

    private static final long serialVersionUID = 1L;

    /**
     * 任务id
     */
    @TableId(type = IdType.ID_WORKER)
    private Long taskId;

    /**
     * 执行时间
     */
    @TableField("execute_time")
    private Date executeTime;

    /**
     * 参数
     */
    @TableField("parameters")
    private byte[] parameters;

    /**
     * 优先级
     */
    @TableField("priority")
    private Integer priority;

    /**
     * 任务类型
     */
    @TableField("task_type")
    private Integer taskType;


}

taskinfo_logs 任务日志表

image-20230217153757838

实体类

package com.heima.model.schedule.pojos;

import com.baomidou.mybatisplus.annotation.*;
import lombok.Data;

import java.io.Serializable;
import java.util.Date;

/**
 * <p>
 * 
 * </p>
 *
 * @author itheima
 */
@Data
@TableName("taskinfo_logs")
public class TaskinfoLogs implements Serializable {

    private static final long serialVersionUID = 1L;

    /**
     * 任务id
     */
    @TableId(type = IdType.ID_WORKER)
    private Long taskId;

    /**
     * 执行时间
     */
    @TableField("execute_time")
    private Date executeTime;

    /**
     * 参数
     */
    @TableField("parameters")
    private byte[] parameters;

    /**
     * 优先级
     */
    @TableField("priority")
    private Integer priority;

    /**
     * 任务类型
     */
    @TableField("task_type")
    private Integer taskType;

    /**
     * 版本号,用乐观锁
     */
    @Version
    private Integer version;

    /**
     * 状态 0=int 1=EXECUTED 2=CANCELLED
     */
    @TableField("status")
    private Integer status;


}

乐观锁支持:

/**
     * mybatis-plus乐观锁支持
     * @return
     */
@Bean
public MybatisPlusInterceptor optimisticLockerInterceptor(){
    MybatisPlusInterceptor interceptor = new MybatisPlusInterceptor();
    interceptor.addInnerInterceptor(new OptimisticLockerInnerInterceptor());
    return interceptor;
}
安装redis

①拉取镜像

docker pull redis

② 创建容器

docker run -d --name redis --restart=always -p 6379:6379 redis
项目集成redis

① 在项目导入redis相关依赖,已经完成

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- redis依赖commons-pool 这个依赖一定要添加 -->
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-pool2</artifactId>
</dependency>

② 在heima-leadnews-schedule中集成redis,添加以下nacos配置,链接上redis

spring:
  redis:
    host: 192.168.200.130
    port: 6379

③ 拷贝资料文件夹下的类:CacheService到heima-leadnews-common模块下,并添加自动配置image-20230217163043963

④:测试

package com.heima.schedule.test;


import com.heima.common.redis.CacheService;
import com.heima.schedule.ScheduleApplication;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

import java.util.Set;


@SpringBootTest(classes = ScheduleApplication.class)
@RunWith(SpringRunner.class)
public class RedisTest {

    @Autowired
    private CacheService cacheService;

    @Test
    public void testList(){

        //在list的左边添加元素
//        cacheService.lLeftPush("list_001","hello,redis");

        //在list的右边获取元素,并删除
        String list_001 = cacheService.lRightPop("list_001");
        System.out.println(list_001);
    }

    @Test
    public void testZset(){
        //添加数据到zset中  分值
        /*cacheService.zAdd("zset_key_001","hello zset 001",1000);
        cacheService.zAdd("zset_key_001","hello zset 002",8888);
        cacheService.zAdd("zset_key_001","hello zset 003",7777);
        cacheService.zAdd("zset_key_001","hello zset 004",999999);*/

        //按照分值获取数据
        Set<String> zset_key_001 = cacheService.zRangeByScore("zset_key_001", 0, 8888);
        System.out.println(zset_key_001);


    }
}
添加任务

添加任务实际上就是添加任务对象到数据库一份,然后在保存到redis一份

①:拷贝mybatis-plus生成的文件,mapper

②:创建task类,用于接收添加任务的参数

package com.heima.model.schedule.dtos;

import lombok.Data;

import java.io.Serializable;

@Data
public class Task implements Serializable {

    /**
     * 任务id
     */
    private Long taskId;
    /**
     * 类型
     */
    private Integer taskType;

    /**
     * 优先级
     */
    private Integer priority;

    /**
     * 执行id
     */
    private long executeTime;

    /**
     * task参数
     */
    private byte[] parameters;
    
}

③:创建TaskService

package com.heima.schedule.service;

import com.heima.model.schedule.dtos.Task;

/**
 * 对外访问接口
 */
public interface TaskService {

    /**
     * 添加任务
     * @param task   任务对象
     * @return       任务id
     */
    public long addTask(Task task) ;

}

实现:

package com.heima.schedule.service.impl;

import com.alibaba.fastjson.JSON;
import com.heima.common.constants.ScheduleConstants;
import com.heima.common.redis.CacheService;
import com.heima.model.schedule.dtos.Task;
import com.heima.model.schedule.pojos.Taskinfo;
import com.heima.model.schedule.pojos.TaskinfoLogs;
import com.heima.schedule.mapper.TaskinfoLogsMapper;
import com.heima.schedule.mapper.TaskinfoMapper;
import com.heima.schedule.service.TaskService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import java.util.Calendar;
import java.util.Date;

@Service
@Transactional
@Slf4j
public class TaskServiceImpl implements TaskService {
    /**
     * 添加延迟任务
     *
     * @param task
     * @return
     */
    @Override
    public long addTask(Task task) {
        //1.添加任务到数据库中

        boolean success = addTaskToDb(task);

        if (success) {
            //2.添加任务到redis
            addTaskToCache(task);
        }


        return task.getTaskId();
    }

    @Autowired
    private CacheService cacheService;

    /**
     * 把任务添加到redis中
     *
     * @param task
     */
    private void addTaskToCache(Task task) {

        String key = task.getTaskType() + "_" + task.getPriority();

        //获取5分钟之后的时间  毫秒值
        Calendar calendar = Calendar.getInstance();
        calendar.add(Calendar.MINUTE, 5);
        long nextScheduleTime = calendar.getTimeInMillis();

        //2.1 如果任务的执行时间小于等于当前时间,存入list
        if (task.getExecuteTime() <= System.currentTimeMillis()) {
            cacheService.lLeftPush(ScheduleConstants.TOPIC + key, JSON.toJSONString(task));
        } else if (task.getExecuteTime() <= nextScheduleTime) {
            //2.2 如果任务的执行时间大于当前时间 && 小于等于预设时间(未来5分钟) 存入zset中
            cacheService.zAdd(ScheduleConstants.FUTURE + key, JSON.toJSONString(task), task.getExecuteTime());
        }


    }

    @Autowired
    private TaskinfoMapper taskinfoMapper;

    @Autowired
    private TaskinfoLogsMapper taskinfoLogsMapper;

    /**
     * 添加任务到数据库中
     *
     * @param task
     * @return
     */
    private boolean addTaskToDb(Task task) {

        boolean flag = false;

        try {
            //保存任务表
            Taskinfo taskinfo = new Taskinfo();
            BeanUtils.copyProperties(task, taskinfo);
            taskinfo.setExecuteTime(new Date(task.getExecuteTime()));
            taskinfoMapper.insert(taskinfo);

            //设置taskID
            task.setTaskId(taskinfo.getTaskId());

            //保存任务日志数据
            TaskinfoLogs taskinfoLogs = new TaskinfoLogs();
            BeanUtils.copyProperties(taskinfo, taskinfoLogs);
            taskinfoLogs.setVersion(1);
            taskinfoLogs.setStatus(ScheduleConstants.SCHEDULED);
            taskinfoLogsMapper.insert(taskinfoLogs);

            flag = true;
        } catch (Exception e) {
            e.printStackTrace();
        }

        return flag;
    }
}

ScheduleConstants常量类

package com.heima.common.constants;

public class ScheduleConstants {

    //task状态
    public static final int SCHEDULED=0;   //初始化状态

    public static final int EXECUTED=1;       //已执行状态

    public static final int CANCELLED=2;   //已取消状态

    public static String FUTURE="future_";   //未来数据key前缀

    public static String TOPIC="topic_";     //当前数据key前缀
}
取消任务

取消任务实际上就是删除数据库中的任务数据,更新日志记录标记改记录为删除

reids中也是一样,删除改元素即可

在TaskService中添加方法

/**
     * 取消任务
     * @param taskId        任务id
     * @return              取消结果
     */
public boolean cancelTask(long taskId);

实现

/**
     * 取消任务
     * @param taskId
     * @return
     */
@Override
public boolean cancelTask(long taskId) {

    boolean flag = false;

    //删除任务,更新日志
    Task task = updateDb(taskId,ScheduleConstants.EXECUTED);

    //删除redis的数据
    if(task != null){
        removeTaskFromCache(task);
        flag = true;
    }



    return false;
}

/**
     * 删除redis中的任务数据
     * @param task
     */
private void removeTaskFromCache(Task task) {

    String key = task.getTaskType()+"_"+task.getPriority();

    if(task.getExecuteTime()<=System.currentTimeMillis()){
        cacheService.lRemove(ScheduleConstants.TOPIC+key,0,JSON.toJSONString(task));
    }else {
        cacheService.zRemove(ScheduleConstants.FUTURE+key, JSON.toJSONString(task));
    }
}

/**
     * 删除任务,更新任务日志状态
     * @param taskId
     * @param status
     * @return
     */
private Task updateDb(long taskId, int status) {
    Task task = null;
    try {
        //删除任务
        taskinfoMapper.deleteById(taskId);

        TaskinfoLogs taskinfoLogs = taskinfoLogsMapper.selectById(taskId);
        taskinfoLogs.setStatus(status);
        taskinfoLogsMapper.updateById(taskinfoLogs);

        task = new Task();
        BeanUtils.copyProperties(taskinfoLogs,task);
        task.setExecuteTime(taskinfoLogs.getExecuteTime().getTime());
    }catch (Exception e){
        log.error("task cancel exception taskid={}",taskId);
    }

    return task;

}
消费任务

在TaskService中添加方法

/**
 * 按照类型和优先级来拉取任务
 * @param type
 * @param priority
 * @return
 */
public Task poll(int type,int priority);

实现

/**
     * 按照类型和优先级拉取任务
     * @return
     */
@Override
public Task poll(int type,int priority) {
    Task task = null;
    try {
        String key = type+"_"+priority;
        String task_json = cacheService.lRightPop(ScheduleConstants.TOPIC + key);
        if(StringUtils.isNotBlank(task_json)){
            task = JSON.parseObject(task_json, Task.class);
            //更新数据库信息
            updateDb(task.getTaskId(),ScheduleConstants.EXECUTED);
        }
    }catch (Exception e){
        e.printStackTrace();
        log.error("poll task exception");
    }

    return task;
}
未来数据定时刷新
reids key值匹配

方案1:keys 模糊匹配

keys的模糊匹配功能很方便也很强大,但是在生产环境需要慎用!开发中使用keys的模糊匹配却发现redis的CPU使用率极高,所以公司的redis生产环境将keys命令禁用了!redis是单线程,会被堵塞

image-20230217163056922

方案2:scan

SCAN 命令是一个基于游标的迭代器,SCAN命令每次被调用之后, 都会向用户返回一个新的游标, 用户在下次迭代时需要使用这个新游标作为SCAN命令的游标参数, 以此来延续之前的迭代过程。

image-20230217163107871

代码案例:

@Test
public void testKeys(){
    Set<String> keys = cacheService.keys("future_*");
    System.out.println(keys);

    Set<String> scan = cacheService.scan("future_*");
    System.out.println(scan);
}
reids管道

普通redis客户端和服务器交互模式

image-20230217163118099

Pipeline请求模型

image-20230217163129588

官方测试结果数据对比

image-20230217163142240

测试案例对比:

//耗时6151
@Test
public  void testPiple1(){
    long start =System.currentTimeMillis();
    for (int i = 0; i <10000 ; i++) {
        Task task = new Task();
        task.setTaskType(1001);
        task.setPriority(1);
        task.setExecuteTime(new Date().getTime());
        cacheService.lLeftPush("1001_1", JSON.toJSONString(task));
    }
    System.out.println("耗时"+(System.currentTimeMillis()- start));
}


@Test
public void testPiple2(){
    long start  = System.currentTimeMillis();
    //使用管道技术
    List<Object> objectList = cacheService.getstringRedisTemplate().executePipelined(new RedisCallback<Object>() {
        @Nullable
        @Override
        public Object doInRedis(RedisConnection redisConnection) throws DataAccessException {
            for (int i = 0; i <10000 ; i++) {
                Task task = new Task();
                task.setTaskType(1001);
                task.setPriority(1);
                task.setExecuteTime(new Date().getTime());
                redisConnection.lPush("1001_1".getBytes(), JSON.toJSONString(task).getBytes());
            }
            return null;
        }
    });
    System.out.println("使用管道技术执行10000次自增操作共耗时:"+(System.currentTimeMillis()-start)+"毫秒");
}
未来数据定时刷新-功能完成

在TaskService中添加方法

@Scheduled(cron = "0 */1 * * * ?")
public void refresh() {
    System.out.println(System.currentTimeMillis() / 1000 + "执行了定时任务");

    // 获取所有未来数据集合的key值
    Set<String> futureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");// future_*
    for (String futureKey : futureKeys) { // future_250_250

        String topicKey = ScheduleConstants.TOPIC + futureKey.split(ScheduleConstants.FUTURE)[1];
        //获取该组key下当前需要消费的任务数据
        Set<String> tasks = cacheService.zRangeByScore(futureKey, 0, System.currentTimeMillis());
        if (!tasks.isEmpty()) {
            //将这些任务数据添加到消费者队列中
            cacheService.refreshWithPipeline(futureKey, topicKey, tasks);
            System.out.println("成功的将" + futureKey + "下的当前需要执行的任务数据刷新到" + topicKey + "下");
        }
    }
}

在引导类中添加开启任务调度注解:@EnableScheduling

分布式锁解决集群下的方法抢占执行
问题描述

启动两台heima-leadnews-schedule服务,每台服务都会去执行refresh定时任务方法

image-20230217163152933

分布式锁

分布式锁:控制分布式系统有序的去对共享资源进行操作,通过互斥来保证数据的一致性。

解决方案:

image-20230217163204966

redis分布式锁

sexnx (SET if Not eXists) 命令在指定的 key 不存在时,为 key 设置指定的值。

image-20230217163213766

这种加锁的思路是,如果 key 不存在则为 key 设置 value,如果 key 已存在则 SETNX 命令不做任何操作

  • 客户端A请求服务器设置key的值,如果设置成功就表示加锁成功
  • 客户端B也去请求服务器设置key的值,如果返回失败,那么就代表加锁失败
  • 客户端A执行代码完成,删除锁
  • 客户端B在等待一段时间后再去请求设置key的值,设置成功
  • 客户端B执行代码完成,删除锁
在工具类CacheService中添加方法
/**
 * 加锁
 *
 * @param name
 * @param expire
 * @return
 */
public String tryLock(String name, long expire) {
    name = name + "_lock";
    String token = UUID.randomUUID().toString();
    RedisConnectionFactory factory = stringRedisTemplate.getConnectionFactory();
    RedisConnection conn = factory.getConnection();
    try {

        //参考redis命令:
        //set key value [EX seconds] [PX milliseconds] [NX|XX]
        Boolean result = conn.set(
                name.getBytes(),
                token.getBytes(),
                Expiration.from(expire, TimeUnit.MILLISECONDS),
                RedisStringCommands.SetOption.SET_IF_ABSENT //NX
        );
        if (result != null && result)
            return token;
    } finally {
        RedisConnectionUtils.releaseConnection(conn, factory,false);
    }
    return null;
}

修改未来数据定时刷新的方法,如下:

/**
 * 未来数据定时刷新
 */
@Scheduled(cron = "0 */1 * * * ?")
public void refresh(){

    String token = cacheService.tryLock("FUTURE_TASK_SYNC", 1000 * 30);
    if(StringUtils.isNotBlank(token)){
        log.info("未来数据定时刷新---定时任务");

        //获取所有未来数据的集合key
        Set<String> futureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");
        for (String futureKey : futureKeys) {//future_100_50

            //获取当前数据的key  topic
            String topicKey = ScheduleConstants.TOPIC+futureKey.split(ScheduleConstants.FUTURE)[1];

            //按照key和分值查询符合条件的数据
            Set<String> tasks = cacheService.zRangeByScore(futureKey, 0, System.currentTimeMillis());

            //同步数据
            if(!tasks.isEmpty()){
                cacheService.refreshWithPipeline(futureKey,topicKey,tasks);
                log.info("成功的将"+futureKey+"刷新到了"+topicKey);
            }
        }
    }
}
数据库同步到redis

为什么要做定时同步?因为缓存很贵,我们不能把所有的定时任务都放到缓存中,这样对缓存的压力太大,要尽可能的减少数据在缓存的时间。

定时任务我们先持久化到数据库中,只有到达我们设置的预设时间才放到redis缓存当中

image-20230217163018095

@Scheduled(cron = "0 */5 * * * ?")
@PostConstruct
public void reloadData() {
    clearCache();
    log.info("数据库数据同步到缓存");
    Calendar calendar = Calendar.getInstance();
    calendar.add(Calendar.MINUTE, 5);

    //查看小于未来5分钟的所有任务
    List<Taskinfo> allTasks = taskinfoMapper.selectList(Wrappers.<Taskinfo>lambdaQuery().lt(Taskinfo::getExecuteTime,calendar.getTime()));
    if(allTasks != null && allTasks.size() > 0){
        for (Taskinfo taskinfo : allTasks) {
            Task task = new Task();
            BeanUtils.copyProperties(taskinfo,task);
            task.setExecuteTime(taskinfo.getExecuteTime().getTime());
            addTaskToCache(task);
        }
    }
}

private void clearCache(){
    // 删除缓存中未来数据集合和当前消费者队列的所有key
    Set<String> futurekeys = cacheService.scan(ScheduleConstants.FUTURE + "*");// future_
    Set<String> topickeys = cacheService.scan(ScheduleConstants.TOPIC + "*");// topic_
    cacheService.delete(futurekeys);
    cacheService.delete(topickeys);
}

延迟队列解决精准时间发布文章

延迟任务服务写完了,下面就开始去调用它们,调用结构如下:

image-20230217184645601

延迟队列服务提供对外接口

提供远程的feign接口,在heima-leadnews-feign-api编写类如下:

package com.heima.apis.schedule;

import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.schedule.dtos.Task;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;

@FeignClient("leadnews-schedule")
public interface IScheduleClient {

    /**
     * 添加任务
     * @param task   任务对象
     * @return       任务id
     */
    @PostMapping("/api/v1/task/add")
    public ResponseResult  addTask(@RequestBody Task task);

    /**
     * 取消任务
     * @param taskId        任务id
     * @return              取消结果
     */
    @GetMapping("/api/v1/task/cancel/{taskId}")
    public ResponseResult cancelTask(@PathVariable("taskId") long taskId);

    /**
     * 按照类型和优先级来拉取任务
     * @param type
     * @param priority
     * @return
     */
    @GetMapping("/api/v1/task/poll/{type}/{priority}")
    public ResponseResult poll(@PathVariable("type") int type,@PathVariable("priority")  int priority);
}

在heima-leadnews-schedule微服务下提供对应的实现

package com.heima.schedule.feign;

import com.heima.apis.schedule.IScheduleClient;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.schedule.dtos.Task;
import com.heima.schedule.service.TaskService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;


@RestController
public class ScheduleClient  implements IScheduleClient {

    @Autowired
    private TaskService taskService;

    /**
     * 添加任务
     * @param task 任务对象
     * @return 任务id
     */
    @PostMapping("/api/v1/task/add")
    @Override
    public ResponseResult addTask(@RequestBody Task task) {
        return ResponseResult.okResult(taskService.addTask(task));
    }

    /**
     * 取消任务
     * @param taskId 任务id
     * @return 取消结果
     */
    @GetMapping("/api/v1/task/cancel/{taskId}")
    @Override
    public ResponseResult cancelTask(@PathVariable("taskId") long taskId) {
        return ResponseResult.okResult(taskService.cancelTask(taskId));
    }

    /**
     * 按照类型和优先级来拉取任务
     * @param type
     * @param priority
     * @return
     */
    @GetMapping("/api/v1/task/poll/{type}/{priority}")
    @Override
    public ResponseResult poll(@PathVariable("type") int type, @PathVariable("priority") int priority) {
        return ResponseResult.okResult(taskService.poll(type,priority));
    }
}
发布文章集成添加延迟队列接口

image-20230217190333209

简单来说就是文章发布多了一步调用而已,之前是发布文章--->文章审核

现在要实现延迟发布嘛,那就中间多一步判断,看看这个文章是不是需要延迟发布

发布文章--->添加进延迟队列--->文章审核拉取消息

在创建WmNewsTaskService

package com.heima.wemedia.service;

import com.heima.model.wemedia.pojos.WmNews;


public interface WmNewsTaskService {

    /**
     * 添加任务到延迟队列中
     * @param id  文章的id
     * @param publishTime  发布的时间  可以做为任务的执行时间
     */
    public void addNewsToTask(Integer id, Date publishTime);


}

实现:

package com.heima.wemedia.service.impl;

import com.heima.apis.schedule.IScheduleClient;
import com.heima.model.common.enums.TaskTypeEnum;
import com.heima.model.schedule.dtos.Task;
import com.heima.model.wemedia.pojos.WmNews;
import com.heima.utils.common.ProtostuffUtil;
import com.heima.wemedia.service.WmNewsTaskService;
import lombok.SneakyThrows;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service;


@Service
@Slf4j
public class WmNewsTaskServiceImpl  implements WmNewsTaskService {


    @Autowired
    private IScheduleClient scheduleClient;

    /**
     * 添加任务到延迟队列中
     * @param id          文章的id
     * @param publishTime 发布的时间  可以做为任务的执行时间
     */
    @Override
    @Async
    public void addNewsToTask(Integer id, Date publishTime) {

        log.info("添加任务到延迟服务中----begin");

        Task task = new Task();
        task.setExecuteTime(publishTime.getTime());
        task.setTaskType(TaskTypeEnum.NEWS_SCAN_TIME.getTaskType());
        task.setPriority(TaskTypeEnum.NEWS_SCAN_TIME.getPriority());
        WmNews wmNews = new WmNews();
        wmNews.setId(id);
        task.setParameters(ProtostuffUtil.serialize(wmNews));

        scheduleClient.addTask(task);

        log.info("添加任务到延迟服务中----end");

    }
    
}

枚举类:

package com.heima.model.common.enums;

import lombok.AllArgsConstructor;
import lombok.Getter;

@Getter
@AllArgsConstructor
public enum TaskTypeEnum {

    NEWS_SCAN_TIME(1001, 1,"文章定时审核"),
    REMOTEERROR(1002, 2,"第三方接口调用失败,重试");
    private final int taskType; //对应具体业务
    private final int priority; //业务不同级别
    private final String desc; //描述信息
}

序列化工具对比

  • JdkSerialize:java内置的序列化能将实现了Serilazable接口的对象进行序列化和反序列化, ObjectOutputStream的writeObject()方法可序列化对象生成字节数组
  • Protostuff:google开源的protostuff采用更为紧凑的二进制数组,表现更加优异,然后使用protostuff的编译工具生成pojo类

拷贝资料中的两个类到heima-leadnews-utils下

Protostuff需要引导依赖:

<dependency>
    <groupId>io.protostuff</groupId>
    <artifactId>protostuff-core</artifactId>
    <version>1.6.0</version>
</dependency>

<dependency>
    <groupId>io.protostuff</groupId>
    <artifactId>protostuff-runtime</artifactId>
    <version>1.6.0</version>
</dependency>

修改发布文章代码:

把之前的异步调用修改为调用延迟任务

@Autowired
private WmNewsTaskService wmNewsTaskService;
 
/**
     * 发布修改文章或保存为草稿
     * @param dto
     * @return
     */
@Override
public ResponseResult submitNews(WmNewsDto dto) {

    //0.条件判断
    if(dto == null || dto.getContent() == null){
        return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
    }

    //1.保存或修改文章

    WmNews wmNews = new WmNews();
    //属性拷贝 属性名词和类型相同才能拷贝
    BeanUtils.copyProperties(dto,wmNews);
    //封面图片  list---> string
    if(dto.getImages() != null && dto.getImages().size() > 0){
        //[1dddfsd.jpg,sdlfjldk.jpg]-->   1dddfsd.jpg,sdlfjldk.jpg
        String imageStr = StringUtils.join(dto.getImages(), ",");
        wmNews.setImages(imageStr);
    }
    //如果当前封面类型为自动 -1
    if(dto.getType().equals(WemediaConstants.WM_NEWS_TYPE_AUTO)){
        wmNews.setType(null);
    }

    saveOrUpdateWmNews(wmNews);

    //2.判断是否为草稿  如果为草稿结束当前方法
    if(dto.getStatus().equals(WmNews.Status.NORMAL.getCode())){
        return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
    }

    //3.不是草稿,保存文章内容图片与素材的关系
    //获取到文章内容中的图片信息
    List<String> materials =  ectractUrlInfo(dto.getContent());
    saveRelativeInfoForContent(materials,wmNews.getId());

    //4.不是草稿,保存文章封面图片与素材的关系,如果当前布局是自动,需要匹配封面图片
    saveRelativeInfoForCover(dto,wmNews,materials);

    //审核文章
    //        wmNewsAutoScanService.autoScanWmNews(wmNews.getId());
    wmNewsTaskService.addNewsToTask(wmNews.getId(),wmNews.getPublishTime());

    return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);

}
消费任务进行审核文章

WmNewsTaskService中添加方法

/**
 * 消费延迟队列数据
 */
public void scanNewsByTask();

实现

@Autowired
private WmNewsAutoScanServiceImpl wmNewsAutoScanService;

/**
     * 消费延迟队列数据
     */
@Scheduled(fixedRate = 1000)
@Override
@SneakyThrows
public void scanNewsByTask() {

    log.info("文章审核---消费任务执行---begin---");

    ResponseResult responseResult = scheduleClient.poll(TaskTypeEnum.NEWS_SCAN_TIME.getTaskType(), TaskTypeEnum.NEWS_SCAN_TIME.getPriority());
    if(responseResult.getCode().equals(200) && responseResult.getData() != null){
        String json_str = JSON.toJSONString(responseResult.getData());
        Task task = JSON.parseObject(json_str, Task.class);
        byte[] parameters = task.getParameters();
        WmNews wmNews = ProtostuffUtil.deserialize(parameters, WmNews.class);
        System.out.println(wmNews.getId()+"-----------");
        wmNewsAutoScanService.autoScanWmNews(wmNews.getId());
    }
    log.info("文章审核---消费任务执行---end---");
}

在WemediaApplication自媒体的引导类中添加开启任务调度注解@EnableScheduling

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1064193.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

起号1个月后,我分析了一些AI数字人项目的红利期和优缺点

本期是赤辰第33期AI项目教程&#xff0c;底部准备了9月粉丝福利&#xff0c;可以免费领取。hi&#xff0c;同学们&#xff0c;AI的应用在各场景都已经呈井喷态势&#xff0c;好比就连近期的杭州亚运会开幕式都采用了数字人火炬手&#xff0c;AI技术的发展不断刷新着我们的脑洞上…

数据科学家的编程语言

数据科学家的编程语言 在今天有256种编程语言可供选择&#xff0c;选择要学习的语言可能会令人不知所措和困难。有些语言更适用于构建游戏&#xff0c;而有些更适用于软件工程&#xff0c;还有一些更适用于数据科学。 编程语言的类型 低级编程语言是计算机用来执行操作的最容…

Spring-事务管理-加强

目录 开启事务 编程式事务 声明式事务 声明式事务的优点 声明式事务的粒度问题 声明式事务用不对容易失效 Spring事务失效可能是哪些原因 Transactional(rollbackFor Exception.class)注解 Spring 事务的实现原理 事务传播机制 介绍 用法 rollbackFor 场景举例 …

Python爬取wallhaven的所有4k壁纸图片

目录 一、前端结构 二、代码 一、前端结构 为get请求&#xff0c;携带参数如下: 随page参数变化网页变化 需要在整张页面中进入: //section[class"thumb-listing-page"]//li/figure/a/href 进入后获取图片src: //section[class"fit"]/div[class"s…

Hadoop伪分布式环境搭建

什么是Hadoop伪分布式集群&#xff1f; Hadoop 伪分布式集群是一种在单个节点上模拟分布式环境的配置&#xff0c;用于学习、开发和测试 Hadoop 的功能和特性。它提供了一个简化的方式来体验和熟悉 Hadoop 的各个组件&#xff0c;而无需配置和管理一个真正的多节点集群。 在 Ha…

国庆作业 day 1

服务器 #include<myhead.h>//消息结构体 typedef struct {long msgtype; //消息类型char data[1024]; //消息正文 }Msg_ds;#define SIZE sizeof(Msg_ds)-sizeof(long) //正文大小 int main(int argc, const char *argv[]) {//1、创建key值key_t key;…

Spring 作用域解析器AnnotationScopeMetadataResolver

博主介绍&#xff1a;✌全网粉丝近5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经…

Java项目防止SQL注入的几种方案

目录 一、什么是SQL注入&#xff1f; 二、Java项目防止SQL注入方式 1、PreparedStatement防止SQL注入 2、mybatis中#{}防止SQL注入 3、对请求参数的敏感词汇进行过滤 4、nginx反向代理防止SQL注入 一、什么是SQL注入&#xff1f; SQL注入即是指web应用程序对用户输入数…

Latent Diffusion Models 论文解读

论文下载地址&#xff1a;https://arxiv.org/pdf/2112.10752.pdf 0 摘要 通过将图像形成过程分解为去噪自编码器的连续应用&#xff0c;扩散模型&#xff08;DM&#xff09;在图像数据及其他方面取得了最先进的合成结果。此外&#xff0c;它们的表述允许一种指导机制来控制图…

HP 喷墨一体机 - “检查墨盒“指示灯闪烁,怎么办?

适用机型&#xff1a; HP PSC 1118、1218 、1318、1350、1406/1408、1508 故障现象&#xff1a; “检查墨盒”指示灯闪烁&#xff0c;“份数”显示的是英文字母“E”&#xff0c;代表 Error&#xff08;错误&#xff09;的意思。&#xff08;无复印份数显示 &#xff09; “检…

想升级macOS Big Sur,但是MacBook内存空间不够该怎么办?

随着使用时间的增长&#xff0c;我们会发现Mac电脑的存储空间越来越少&#xff0c;这时候我们就需要对Mac电脑进行清理&#xff0c;以释放更多的存储空间。那么&#xff0c;Mac空间不足怎么解决呢&#xff1f; 1.清理垃圾文件 Mac空间不足怎么解决&#xff1f;首先要做的就是清…

利用fitnesse实现api接口自动化测试

上午在园子里乱逛&#xff0c;看了不少小伙伴们分享的接口测试方面的知识&#xff0c;仔细想想&#xff0c;我做接口测试也有几个年头了&#xff0c;大家所叙述到的一些经验或多或少&#xff0c;我也曾遇到过&#xff0c;突然意识到知识的点滴积累是多么的重要&#xff0c;我记…

SRTP交叉编译与移植

1 SRTP源码下载 源码下载在github采用的库为libsrtp2.5.0: weget https://github.com/cisco/libsrtp/archive/refs/tags/v2.5.0.tar.gz2 SRTP交叉编译 新增交叉编译脚本&#xff0c;这里需要支持openssl。 ./configure --hostarm-linux-androideabi --prefix$(pwd)/object …

基于python的GUI设计

GUI设计是编程应用的一个重要载体&#xff0c;是软件开发实现的重要步骤&#xff0c;需要重要掌握&#xff0c;不管是C、JAVA、python、matlab等编程语言&#xff0c;都需要GUI界面设计来实验软件开发的前期工作&#xff0c;同时也方便按钮操作。 在设计GUI的过程中&#xff0…

ZRTP协议与原理

1 ZRTP简介 ZRTP&#xff0c;全名Z Real-time Transport Protocol&#xff0c;是一种网络协议&#xff0c;旨在为实时通信提供安全性。与其它安全协议&#xff08;如TLS和IPsec&#xff09;不同&#xff0c;ZRTP专门为实时通信设计&#xff0c;包括音频和视频通话。它是由Phil…

竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

文章目录 0 前言1 课题说明2 效果展示3 具体实现4 关键代码实现5 算法综合效果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的数学公式识别算法实现 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学…

支付环境安全漏洞介绍

1、平台支付逻辑全流程分析 2、平台支付漏洞如何利用&#xff1f;买东西还送钱&#xff1f; 3、BURP抓包分析修改支付金额&#xff0c;伪造交易状态&#xff1f; 4、修改购物车参数实现底价购买商品 5、SRC、CTF、HW项目月入10W副业之路 6、如何构建最适合自己的网安学习路线 1…

netcore Polly.Core

一、安装包 <PackageReference Include"Polly.Core" Version"8.0.0" /> 二、编写重试 ResiliencePipeline pipeline new ResiliencePipelineBuilder().AddRetry(new RetryStrategyOptions{MaxRetryAttempts 2,Delay TimeSpan.FromSeconds(3),O…

竞赛 机器视觉目标检测 - opencv 深度学习

文章目录 0 前言2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 0 前言 &#x1f5…

Flink的处理函数——processFunction

目录 一、处理函数概述 二、Process函数分类——8个 &#xff08;1&#xff09;ProcessFunction &#xff08;2&#xff09;KeyedProcessFunction &#xff08;3&#xff09;ProcessWindowFunction &#xff08;4&#xff09;ProcessAllWindowFunction &#xff…