yolov5分割+检测c++ qt 中部署,以opencv方式(详细代码(全)+复制可用)

news2024/11/29 22:49:17

1:版本说明:

qt 5.12.10

opencv 4.5.3 (yolov5模型部署要求opencv>4.5.0)

2:检测的代码

yolo.h
#pragma once
#include<iostream>
#include<cmath>
#include<vector>
#include <opencv2/opencv.hpp>
#include<opencv2/dnn.hpp>

class yolo
{
public:
    yolo() {}
    ~yolo(){}
    bool readModel(cv::dnn::Net &net,std::string &netpath, bool isCuda);
    struct Output
    {
        int id;//结果类别id
        float confidence;//结果置信度
        cv::Rect box;//矩形框

        int ship_id;//船的id
        int truck_id;//人的id
        int person_id;//人的id
         int  staring_id;//车的id
        int  forklift_id;//车的id

        int unload_car_id;//船的id
        int load_car_id;//人的id
        int  private_car_id;//车的id

    };
    struct Output_max_confidence
    {
        int id;//结果类别id
        float confidence;//结果置信度
        cv::Rect box;//矩形框

    };
    int ship_num;//总人数
    int  car_trucks_num;//总车数
    int person_num;//总船数
    int stacking_area_num;//总人数
    int  car_forklift_num;//总车数
    int unload_car_num;//总船数
    int load_car_num;//总人数
    int  car_private_num;//总车数

    bool Detect(cv::Mat &SrcImg, cv::dnn::Net &net, std::vector<Output> &output);
    void drawPred(cv::Mat &img, std::vector<Output> result, std::vector<cv::Scalar> color);

    //参数为私有参数,当然也可以是设置成公开或者保护。
    Output_max_confidence get_only_one_max_confidence(std::vector<Output> result);
    float findMax(std::vector<float> vec);

    int getPositionOfMax(std::vector<float> vec, int max);
\
    void drawRect(cv::Mat &img, yolo::Output_max_confidence result);
private:
    //计算归一化函数
    float Sigmoid(float x) {
        return static_cast<float>(1.f / (1.f + exp(-x)));
    }
    //anchors
    const float netAnchors[3][6] = { { 10.0, 13.0, 16.0, 30.0, 33.0, 23.0 },{ 30.0, 61.0, 62.0, 45.0, 59.0, 119.0 },{ 116.0, 90.0, 156.0, 198.0, 373.0, 326.0 } };
    //stride
    const float netStride[3] = { 8.0, 16.0, 32.0 };
    const int netWidth = 640; //网络模型输入大小
    const int netHeight = 640;
    float nmsThreshold = 0.02;
    float boxThreshold = 0.05;
    float classThreshold = 0.45;
    //类名
//    std::vector<std::string> className = { "car", "person"};
//    std::vector<std::string> className = { "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
//                                           "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
//                                           "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
//                                           "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
//                                           "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
//                                           "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
//                                           "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
//                                           "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
//                                           "hair drier", "toothbrush"};
    std::vector<std::string> className = { "ship","car_trucks","person","stacking_area","car_forklift","unload_car","load_car","car_private"};//"car","person"


};
yolo.cpp
#include "yolo.h"
#include<iostream>
#include<cmath>
#include<vector>
#include <opencv2/opencv.hpp>
#include<opencv2/dnn.hpp>
using namespace std;
using namespace cv;
using namespace dnn;
#pragma execution_character_set("utf-8");
bool yolo::readModel(Net &net, string &netPath, bool isCuda = false) {
    try {
        net = readNetFromONNX(netPath);
        cout<<"load net successfull!"<<endl;
    }
    catch (const std::exception&) {
        return false;
    }
    //cuda
    if (isCuda) {
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
        net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
    }
    //cpu
    else {
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
        net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
    }
    return true;
}


bool yolo::Detect(Mat &SrcImg, Net &net, vector<Output> &output) {
    Mat blob;
    int col = SrcImg.cols;
    int row = SrcImg.rows;
    int maxLen = MAX(col, row);
    Mat netInputImg = SrcImg.clone();
    if (maxLen > 1.2*col || maxLen > 1.2*row) {
        Mat resizeImg = Mat::zeros(maxLen, maxLen, CV_8UC3);
        SrcImg.copyTo(resizeImg(Rect(0, 0, col, row)));
        netInputImg = resizeImg;
    }
    blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(104, 117, 123), true, false);
    blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(0, 0,0), true, false);//如果训练集未对图片进行减去均值操作,则需要设置为这句
    //blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(netWidth, netHeight), cv::Scalar(114, 114,114), true, false);
    net.setInput(blob);
    std::vector<cv::Mat> netOutputImg;
    //vector<string> outputLayerName{"345","403", "461","output" };
    //net.forward(netOutputImg, outputLayerName[3]); //获取output的输出
    net.forward(netOutputImg, net.getUnconnectedOutLayersNames());

    //接上面
    std::vector<int> classIds;//结果id数组
    std::vector<float> confidences;//结果每个id对应置信度数组
    std::vector<cv::Rect> boxes;//每个id矩形框
    std::vector<int> ship_id;//记录下人数的id号码----补充
    std::vector<int> trucks_id;//记录下车数的id号码----补充
    std::vector<int> person_id;//记录下人数的id号码----补充
    std::vector<int> stacking_id;//记录下车数的id号码----补充
    std::vector<int> forklift_id;//记录下人数的id号码----补充
    std::vector<int> unload_car_id;//记录下车数的id号码----补充
    std::vector<int> load_car_id;//记录下人数的id号码----补充
    std::vector<int> car_private_id;//记录下车数的id号码----补充

    float ratio_h = (float)netInputImg.rows / netHeight;
    float ratio_w = (float)netInputImg.cols / netWidth;
    int net_width = className.size() + 5;  //输出的网络宽度是类别数+5
    float* pdata = (float*)netOutputImg[0].data;
    for (int stride = 0; stride < 3; stride++) {    //stride
        int grid_x = (int)(netWidth / netStride[stride]);
        int grid_y = (int)(netHeight / netStride[stride]);
        for (int anchor = 0; anchor < 3; anchor++) { //anchors
            const float anchor_w = netAnchors[stride][anchor * 2];
            const float anchor_h = netAnchors[stride][anchor * 2 + 1];
            for (int i = 0; i < grid_y; i++) {
                for (int j = 0; j < grid_y; j++) {
                    //float box_score = Sigmoid(pdata[4]);//获取每一行的box框中含有某个物体的概率 yolo5.0
                    float box_score = pdata[4];//获取每一行的box框中含有某个物体的概率 yolo6.0
                    if (box_score > boxThreshold) {
                        //为了使用minMaxLoc(),将85长度数组变成Mat对象
                        cv::Mat scores(1, className.size(), CV_32FC1, pdata + 5);
                        Point classIdPoint;
                        double max_class_socre;
                        minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
                        //max_class_socre = Sigmoid((float)max_class_socre);  //yolo 5.0
                        max_class_socre = (float)max_class_socre;    //yolo 6.0
                        if (max_class_socre > classThreshold) {
                            //rect [x,y,w,h]
                            //yolov5 5.0格式
                            //float x = (Sigmoid(pdata[0]) * 2.f - 0.5f + j) * netStride[stride];  //x
                            //float y = (Sigmoid(pdata[1]) * 2.f - 0.5f + i) * netStride[stride];   //y
                            //float w = powf(Sigmoid(pdata[2]) * 2.f, 2.f) * anchor_w;   //w
                            //float h = powf(Sigmoid(pdata[3]) * 2.f, 2.f) * anchor_h;  //h
                            //yolov5 6.0格式:
                            float x = pdata[0];// (Sigmoid(pdata[0]) * 2.f - 0.5f + j) * netStride[stride];  //x
                            float y = pdata[1];// (Sigmoid(pdata[1]) * 2.f - 0.5f + i) * netStride[stride];   //y
                            float w = pdata[2];// powf(Sigmoid(pdata[2]) * 2.f, 2.f) * anchor_w;   //w
                            float h = pdata[3];// powf(Sigmoid(pdata[3]) * 2.f, 2.f) * anchor_h;  //h
                            int left = (x - 0.5*w)*ratio_w;
                            int top = (y - 0.5*h)*ratio_h;

                            classIds.push_back(classIdPoint.x);
                            confidences.push_back(max_class_socre*box_score);
                            boxes.push_back(Rect(left, top, int(w*ratio_w), int(h*ratio_h)));

                        }
                    }
                    pdata += net_width;//指针移到下一行
                }
            }
        }
    }

    //接上面执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)
    vector<int> nms_result;
    int ship_id_ini=0;//初始化人数,
    int trucks_id_ini=0;//初始化人数,
    int person_id_ini=0;//初始化车辆数
    int stacking_id_ini=0;//初始化车辆数

    int forklift_id_ini=0;//初始化车辆数
    int unload_car_id_ini=0;//初始化车辆数
    int load_car_id_ini=0;//初始化车辆数
    int car_private_id_ini=0;//初始化车辆数


    NMSBoxes(boxes, confidences, classThreshold, nmsThreshold, nms_result);
    for (int i = 0; i < nms_result.size(); i++) {
        int idx = nms_result[i];
        Output result;
        result.id = classIds[idx];
        result.confidence = confidences[idx];
        result.box = boxes[idx];

        output.push_back(result);
        if(result.id==0)//当类别数等于船的时候
        {
            result.ship_id=ship_id_ini;//当船等于
            ship_id_ini=ship_id_ini+1;

        }
        if(result.id==1)//当类别数等于车的时候
        {
            result.truck_id=trucks_id_ini;//当车数等于
            trucks_id_ini=trucks_id_ini+1;
        }
        if(result.id==2)//当类别数等于人的时候
        {
            result.person_id=person_id_ini;//当人数等于
            person_id_ini=person_id_ini+1;

        }if(result.id==3)//当类别数等于人的时候
        {
            result.staring_id=stacking_id_ini;//当人数等于
            stacking_id_ini=stacking_id_ini+1;

        }
        if(result.id==4)//当类别数等于人的时候
        {
            result.forklift_id=forklift_id_ini;//当人数等于
            forklift_id_ini=forklift_id_ini+1;

        }
        if(result.id==5)//当类别数等于人的时候
        {
            result.unload_car_id=unload_car_id_ini;//当人数等于
            unload_car_id_ini=unload_car_id_ini+1;

        }
        if(result.id==6)//当类别数等于人的时候
        {
            result.load_car_id=load_car_id_ini;//当人数等于
            load_car_id_ini=load_car_id_ini+1;

        }
        if(result.id==7)//当类别数等于人的时候
        {
            result.private_car_id=car_private_id_ini;//当人数等于
            car_private_id_ini=car_private_id_ini+1;

        }

    }

    ship_num=ship_id_ini;
    car_trucks_num=trucks_id_ini;
    person_num=person_id_ini;

    stacking_area_num=stacking_id_ini;
    car_forklift_num=forklift_id_ini ;//总车数
    unload_car_num=unload_car_id_ini;//总船数
    load_car_num=load_car_id_ini;//总人数
    car_private_num=car_private_id_ini;//总车数

    if (output.size())
        return true;
    else
        return false;

}//这个括号是最后

void yolo::drawPred(Mat &img, vector<Output> result, vector<Scalar> color)
{

    for (int i = 0; i < result.size(); i++)
    {
        int left, top;
        left = result[i].box.x;
        top = result[i].box.y;
        int color_num = i;
        rectangle(img, result[i].box, color[result[i].id], 2, 8);
        //      string label = className[result[i].id] + ":" + to_string(result[i].confidence)+" id:"+to_string(result[i].person_id);
        string label;
        if(result[i].id==0)
        {
            label = className[result[i].id] ;
        }
        if(result[i].id==1)
        {
            label = className[result[i].id] ;
        }
        if(result[i].id==2)
        {
            label = className[result[i].id] ;
        }
        if(result[i].id==3)
        {
            label = className[result[i].id] ;
        }
        if(result[i].id==4)
        {
            label = className[result[i].id] ;
        }
        if(result[i].id==5)
        {
            label = className[result[i].id] ;
        }
        if(result[i].id==6)
        {
            label = className[result[i].id] ;
        }
        if(result[i].id==7)
        {
            label = className[result[i].id];
        }
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        //rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
        putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);
    }
    //imshow("res", img);
    //imwrite("./result.jpg", img);
    //waitKey();
    //destroyAllWindows();
}

//这个是针对悍马的画框
void yolo::drawRect(cv::Mat &img, yolo::Output_max_confidence result)
{

    int left, top;
    left = result.box.x;
    top = result.box.y;

    rectangle(img, result.box,Scalar(0,0,255) , 2, 8);
    //      string label = className[result[i].id] + ":" + to_string(result[i].confidence)+" id:"+to_string(result[i].person_id);
    string label;
    if(result.id==0)
    {
        label = className[result.id];
    }
    int baseLine;
    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    top = max(top, labelSize.height);
    //rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
    putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 2,Scalar(0,0,255), 2);

}

float yolo::findMax(std::vector<float> vec) {
    float max = -999;
    for (auto v : vec) {
        if (max < v) max = v;
    }
    return max;
}

int yolo::getPositionOfMax(std::vector<float> vec, int max) {
    auto distance = find(vec.begin(), vec.end(), max);
    return distance - vec.begin();
}

//返回一个最大置信度的框
yolo::Output_max_confidence yolo::get_only_one_max_confidence(std::vector<Output> result)
{

    std::vector<float>confidence;
    for (int i = 0; i < result.size(); i++)
    {
        confidence.push_back(result.at(i).confidence);
        //        cout<<"result.at(i).confidence"<<result.at(i).confidence<<endl;
    }
    float maxConfidence=findMax(confidence);
    int position = result.size()-getPositionOfMax(confidence, maxConfidence);
    //    cout<<"max_confidengce"<<maxConfidence<<"position:"<<position<<endl;
    Output_max_confidence o_m_c;
    o_m_c.confidence=maxConfidence;
    o_m_c.id=position;
    o_m_c.box=result.at(position).box;
    return o_m_c ;

}
检测的调用代码测试案例

这段调用的例子,只要把frame 改成你们自己的图片即可

yolo test;    //创建yolo类
cv::dnn::Net net; //创建yolo网络
vector< cv::Scalar> color;//Bounding Box颜色 
QString Filename_onnx="quanjingbest.onnx";
cv::String filename_onnx=Filename_onnx.toStdString();
vector<yolo::Output>result_video;
test.readModel(net,filename_onnx,false);
for (int i = 0; i < 80; i++) {
        int b = rand() % 256;
        int g = rand() % 256;
        int r = rand() % 256;
        color.push_back( cv::Scalar(b, g, r));
    }

cv::Mat frame=cv::imread("D://1.jpg");
if(test.Detect(frame, net, result_video))          //调用YOLO模型检测
      test.drawPred(frame, result_video, color);
cv::imshow("a",frame);
cv::waitKey(1);

4:分割的主要代码

YoloSeg.h
#ifndef YOLO_SEG_H
#define YOLO_SEG_H


#pragma once
#include<iostream>
#include<opencv2/opencv.hpp>
#include "yolov5_seg_utils.h"

class YoloSeg {
public:
    YoloSeg() {
    }
    ~YoloSeg() {}
    /** \brief Read onnx-model
    * \param[out] read onnx file into cv::dnn::Net
    * \param[in] modelPath:onnx-model path
    * \param[in] isCuda:if true and opencv built with CUDA(cmake),use OpenCV-GPU,else run it on cpu.
    */
    bool ReadModel(cv::dnn::Net& net, std::string& netPath, bool isCuda);
    /** \brief  detect.
    * \param[in] srcImg:a 3-channels image.
    * \param[out] output:detection results of input image.
    */
    bool Detect(cv::Mat& srcImg, cv::dnn::Net& net, std::vector<OutputSeg>& output);

#if(defined YOLO_P6 && YOLO_P6==true)

    const int _netWidth = 1280;  //ONNX图片输入宽度
    const int _netHeight = 1280; //ONNX图片输入高度
    const int _segWidth = 320;  //_segWidth=_netWidth/mask_ratio
    const int _segHeight = 320;
    const int _segChannels = 32;
#else

    const int _netWidth = 640;   //ONNX图片输入宽度
    const int _netHeight = 640;  //ONNX图片输入高度
    const int _segWidth = 160;    //_segWidth=_netWidth/mask_ratio
    const int _segHeight = 160;
    const int _segChannels = 32;

#endif // YOLO_P6

    float _classThreshold = 0.25;
    float _nmsThreshold = 0.45;
    float _maskThreshold = 0.5;

public:
    std::vector<std::string> _className = { "steel"};//类别名,换成自己的模型需要修改此项
};

#endif // YOLO_SEG_H
YoloSeg.cpp
#include "yolo_seg.h"

#include"yolo_seg.h"
using namespace std;
using namespace cv;
using namespace cv::dnn;

bool YoloSeg::ReadModel(Net& net, string& netPath, bool isCuda = false) {
    try {
        net = readNet(netPath);
#if CV_VERSION_MAJOR==4 &&CV_VERSION_MINOR==7&&CV_VERSION_REVISION==0
        net.enableWinograd(false);  //bug of opencv4.7.x in AVX only platform ,https://github.com/opencv/opencv/pull/23112 and https://github.com/opencv/opencv/issues/23080
        //net.enableWinograd(true);		//If your CPU supports AVX2, you can set it true to speed up
#endif
    }
    catch (const std::exception&) {
        return false;
    }
    if (isCuda) {
        //cuda
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
        net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); //or DNN_TARGET_CUDA_FP16
    }
    else {
        //cpu
        cout << "Inference device: CPU" << endl;
        net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT);
        net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
    }
    return true;
}


bool YoloSeg::Detect(Mat& srcImg, Net& net, vector<OutputSeg>& output) {
    Mat blob;
    output.clear();
    int col = srcImg.cols;
    int row = srcImg.rows;
    Mat netInputImg;
    Vec4d params;
    LetterBox(srcImg, netInputImg, params, cv::Size(_netWidth, _netHeight));
    blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(0, 0, 0), true, false);
    //**************************************************************************************************************************************************/
    //如果在其他设置没有问题的情况下但是结果偏差很大,可以尝试下用下面两句语句
    // If there is no problem with other settings, but results are a lot different from  Python-onnx , you can try to use the following two sentences
    //
    //$ blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(104, 117, 123), true, false);
    //$ blobFromImage(netInputImg, blob, 1 / 255.0, cv::Size(_netWidth, _netHeight), cv::Scalar(114, 114,114), true, false);
    //****************************************************************************************************************************************************/
    net.setInput(blob);
    std::vector<cv::Mat> net_output_img;
    //*********************************************************************************************************************************
    //net.forward(net_output_img, net.getUnconnectedOutLayersNames());
    //opencv4.5.x和4.6.x这里输出不一致,推荐使用下面的固定名称输出
    // 如果使用net.forward(net_output_img, net.getUnconnectedOutLayersNames()),需要确认下net.getUnconnectedOutLayersNames()返回值中output0在前,output1在后,否者出错
    //
    // The outputs of opencv4.5.x and 4.6.x are inconsistent.Please make sure "output0" is in front of "output1" if you use net.forward(net_output_img, net.getUnconnectedOutLayersNames())
    //*********************************************************************************************************************************
    vector<string> output_layer_names{ "output0","output1" };
    net.forward(net_output_img, output_layer_names); //获取output的输出

    std::vector<int> class_ids;//结果id数组
    std::vector<float> confidences;//结果每个id对应置信度数组
    std::vector<cv::Rect> boxes;//每个id矩形框
    std::vector<vector<float>> picked_proposals;  //output0[:,:, 5 + _className.size():net_width]===> for mask
    int net_width = _className.size() + 5 + _segChannels;// 80 + 5 + 32 = 117
    int out0_width= net_output_img[0].size[2];

//    assert(net_width == out0_width, "Error Wrong number of _className or _segChannels");  //模型类别数目不对或者_segChannels设置错误
    int net_height = net_output_img[0].size[1];// 25200
    float* pdata = (float*)net_output_img[0].data;
    for (int r = 0; r < net_height; r++) {    //lines
        float box_score = pdata[4];
        if (box_score >= _classThreshold) {
            cv::Mat scores(1, _className.size(), CV_32FC1, pdata + 5); //  可是 后面不只是有80个类别的概率;
            Point classIdPoint;
            double max_class_socre;
            minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
            max_class_socre = (float)max_class_socre;
            if (max_class_socre >= _classThreshold) {

                vector<float> temp_proto(pdata + 5 + _className.size(), pdata + net_width); // Mask Coeffcients,mask的掩码系数
                picked_proposals.push_back(temp_proto);
                //rect [x,y,w,h]
                float x = (pdata[0] - params[2]) / params[0];  //x
                float y = (pdata[1] - params[3]) / params[1];  //y
                float w = pdata[2] / params[0];  //w
                float h = pdata[3] / params[1];  //h
                int left = MAX(int(x - 0.5 * w + 0.5), 0);
                int top = MAX(int(y - 0.5 * h + 0.5), 0);
                class_ids.push_back(classIdPoint.x);
                confidences.push_back(max_class_socre * box_score);
                boxes.push_back(Rect(left, top, int(w + 0.5), int(h + 0.5)));
            }
        }
        pdata += net_width;//下一行

    }

    //NMS
    vector<int> nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, _classThreshold, _nmsThreshold, nms_result);
    std::vector<vector<float>> temp_mask_proposals;
    Rect holeImgRect(0, 0, srcImg.cols, srcImg.rows);
    for (int i = 0; i < nms_result.size(); ++i) {

        int idx = nms_result[i];
        OutputSeg result;
        result.id = class_ids[idx];
        result.confidence = confidences[idx];
        result.box = boxes[idx] & holeImgRect;
        temp_mask_proposals.push_back(picked_proposals[idx]);
        output.push_back(result);
    }

    MaskParams mask_params;
    mask_params.params = params;
    mask_params.srcImgShape = srcImg.size();
    for (int i = 0; i < temp_mask_proposals.size(); ++i) {
        GetMask2(Mat(temp_mask_proposals[i]).t(), net_output_img[1], output[i], mask_params); // 注意这里是net_output_img[1],为原型mask
    }


    //******************** ****************
    // 老版本的方案,如果上面GetMask2出错,建议使用这个。
    // If the GetMask2() still reports errors , it is recommended to use GetMask().
    // Mat mask_proposals;
    //for (int i = 0; i < temp_mask_proposals.size(); ++i)
    //	mask_proposals.push_back(Mat(temp_mask_proposals[i]).t());
    //GetMask(mask_proposals, net_output_img[1], output, mask_params);
    //*****************************************************/


    if (output.size())
        return true;
    else
        return false;
}
yolov5_seg_utils.h
#ifndef YOLOV5_SEG_UTILS_H
#define YOLOV5_SEG_UTILS_H


#pragma once
#include<iostream>
#include <numeric>
#include<opencv2/opencv.hpp>

#define YOLO_P6 false //是否使用P6模型
#define ORT_OLD_VISON 12  //ort1.12.0 之前的版本为旧版本API

struct OutputSeg {
    int id;             //结果类别id
    float confidence;   //结果置信度
    cv::Rect box;       //矩形框
    cv::Mat boxMask;       //矩形框内mask,节省内存空间和加快速度
};
struct MaskParams {
    int segChannels = 32;
    int segWidth = 160;
    int segHeight = 160;
    int netWidth = 640;
    int netHeight = 640;
    float maskThreshold = 0.5;
    cv::Size srcImgShape;
    cv::Vec4d params;

};
bool CheckParams(int netHeight, int netWidth, const int* netStride, int strideSize);
void DrawPred(cv::Mat& img, std::vector<OutputSeg> result, std::vector<std::string> classNames, std::vector<cv::Scalar> color);
void LetterBox(const cv::Mat& image, cv::Mat& outImage,
    cv::Vec4d& params, //[ratio_x,ratio_y,dw,dh]
    const cv::Size& newShape = cv::Size(640, 640),
    bool autoShape = false,
    bool scaleFill = false,
    bool scaleUp = true,
    int stride = 32,
    const cv::Scalar& color = cv::Scalar(114, 114, 114));
void GetMask(const cv::Mat& maskProposals, const cv::Mat& maskProtos, std::vector<OutputSeg>& output, const MaskParams& maskParams);
void GetMask2(const cv::Mat& maskProposals, const cv::Mat& maskProtos, OutputSeg& output, const MaskParams& maskParams);

#endif // YOLOV5_SEG_UTILS_H
 yolov5_seg_utils.cpp
#include "yolov5_seg_utils.h"

#pragma once
#include "yolov5_seg_utils.h"
using namespace cv;
using namespace std;
bool CheckParams(int netHeight, int netWidth, const int* netStride, int strideSize) {
    if (netHeight % netStride[strideSize - 1] != 0 || netWidth % netStride[strideSize - 1] != 0)
    {
        cout << "Error:_netHeight and _netWidth must be multiple of max stride " << netStride[strideSize - 1] << "!" << endl;
        return false;
    }
    return true;
}

void LetterBox(const cv::Mat& image, cv::Mat& outImage, cv::Vec4d& params, const cv::Size& newShape,
    bool autoShape, bool scaleFill, bool scaleUp, int stride, const cv::Scalar& color)
{
    if (false) {
        int maxLen = MAX(image.rows, image.cols);
        outImage = Mat::zeros(Size(maxLen, maxLen), CV_8UC3);
        image.copyTo(outImage(Rect(0, 0, image.cols, image.rows)));
        params[0] = 1;
        params[1] = 1;
        params[3] = 0;
        params[2] = 0;
    }

    cv::Size shape = image.size();
    float r = std::min((float)newShape.height / (float)shape.height,
        (float)newShape.width / (float)shape.width);
    if (!scaleUp)
        r = std::min(r, 1.0f);

    float ratio[2]{ r, r };
    int new_un_pad[2] = { (int)std::round((float)shape.width * r),(int)std::round((float)shape.height * r) };

    auto dw = (float)(newShape.width - new_un_pad[0]);
    auto dh = (float)(newShape.height - new_un_pad[1]);

    if (autoShape)
    {
        dw = (float)((int)dw % stride);
        dh = (float)((int)dh % stride);
    }
    else if (scaleFill)
    {
        dw = 0.0f;
        dh = 0.0f;
        new_un_pad[0] = newShape.width;
        new_un_pad[1] = newShape.height;
        ratio[0] = (float)newShape.width / (float)shape.width;
        ratio[1] = (float)newShape.height / (float)shape.height;
    }

    dw /= 2.0f;
    dh /= 2.0f;

    if (shape.width != new_un_pad[0] && shape.height != new_un_pad[1])
    {
        cv::resize(image, outImage, cv::Size(new_un_pad[0], new_un_pad[1]));
    }
    else {
        outImage = image.clone();
    }

    int top = int(std::round(dh - 0.1f));
    int bottom = int(std::round(dh + 0.1f));
    int left = int(std::round(dw - 0.1f));
    int right = int(std::round(dw + 0.1f));
    params[0] = ratio[0];
    params[1] = ratio[1];
    params[2] = left;
    params[3] = top;
    cv::copyMakeBorder(outImage, outImage, top, bottom, left, right, cv::BORDER_CONSTANT, color);
}

void GetMask(const cv::Mat& maskProposals, const cv::Mat& maskProtos, std::vector<OutputSeg>& output, const MaskParams& maskParams) {
    //cout << maskProtos.size << endl;

    int seg_channels = maskParams.segChannels;
    int net_width = maskParams.netWidth;
    int seg_width = maskParams.segWidth;
    int net_height = maskParams.netHeight;
    int seg_height = maskParams.segHeight;
    float mask_threshold = maskParams.maskThreshold;
    Vec4f params = maskParams.params;
    Size src_img_shape = maskParams.srcImgShape;

    Mat protos = maskProtos.reshape(0, { seg_channels,seg_width * seg_height });

    Mat matmul_res = (maskProposals * protos).t();
    Mat masks = matmul_res.reshape(output.size(), { seg_width,seg_height });
    vector<Mat> maskChannels;
    split(masks, maskChannels);
    for (int i = 0; i < output.size(); ++i) {
        Mat dest, mask;
        //sigmoid
        cv::exp(-maskChannels[i], dest);
        dest = 1.0 / (1.0 + dest);

        Rect roi(int(params[2] / net_width * seg_width), int(params[3] / net_height * seg_height), int(seg_width - params[2] / 2), int(seg_height - params[3] / 2));
        dest = dest(roi);
        resize(dest, mask, src_img_shape, INTER_NEAREST);

        //crop
        Rect temp_rect = output[i].box;
        mask = mask(temp_rect) > mask_threshold;
        output[i].boxMask = mask;
    }
}
void GetMask2(const Mat& maskProposals, const Mat& mask_protos, OutputSeg& output, const MaskParams& maskParams) {
    int seg_channels = maskParams.segChannels;
    int net_width = maskParams.netWidth;
    int seg_width = maskParams.segWidth;
    int net_height = maskParams.netHeight;
    int seg_height = maskParams.segHeight;
    float mask_threshold = maskParams.maskThreshold;
    Vec4f params = maskParams.params;
    Size src_img_shape = maskParams.srcImgShape;

    Rect temp_rect = output.box;
    // 把已经到原图的检测框坐标信息  映射到  获得mask原型分支的输入尺寸上【160, 160】
    int rang_x = floor((temp_rect.x * params[0] + params[2]) / net_width * seg_width);
    int rang_y = floor((temp_rect.y * params[1] + params[3]) / net_height * seg_height);
    int rang_w = ceil(((temp_rect.x + temp_rect.width) * params[0] + params[2]) / net_width * seg_width) - rang_x;
    int rang_h = ceil(((temp_rect.y  + temp_rect.height) * params[0] + params[3]) / net_width * seg_height) - rang_y;

    //
    rang_w = MAX(rang_w, 1);
    rang_h = MAX(rang_h, 1);
    if (rang_x + rang_w > seg_width){
        if (seg_width - rang_x > 0)
            rang_w =seg_width -rang_x;
        else
            rang_x -= 1;
    }
    if (rang_y + rang_h > seg_height) {
        if (seg_height - rang_y > 0)
            rang_h = seg_height - rang_y;
        else
            rang_y -= 1;
    }

    vector<Range> roi_ranges;
    roi_ranges.push_back(Range(0,1));
    roi_ranges.push_back(Range::all());
    roi_ranges.push_back(Range(rang_y, rang_h+rang_y));
    roi_ranges.push_back(Range(rang_x, rang_w+rang_x));

    // 裁剪mask原型
    Mat temp_mask_protos = mask_protos(roi_ranges).clone(); // 剪裁原型,保存检测框内部的原型,其余位置清零,  以此来获得感兴趣区域(roi)
    Mat protos = temp_mask_protos.reshape(0, { seg_channels, rang_w*rang_h});// 检测至检测框大小?

    // mask系数与mask原型做矩阵乘法
    Mat matmul_res = (maskProposals * protos).t(); // mask系数【1,32】 与 mask原型【32, h*w】进行矩阵相称
    Mat masks_feature = matmul_res.reshape(1,{rang_h, rang_w}); //【1,h,w】
    Mat dest, mask;

    // sigmod
    cv::exp(-masks_feature, dest);
    dest = 1.0 / (1.0 + dest);

    // 检测框坐标 映射到 原图尺寸
    int left = floor((net_width / seg_width * rang_x - params[2]) / params[0]);
    int top = floor((net_width / seg_height * rang_y - params[3]) / params[1]);
    int width = ceil(net_width / seg_height * rang_w / params[0]);
    int height = ceil(net_height / seg_height * rang_h / params[1]);

    // 检测框mask缩放到原图尺寸
    resize(dest, mask, Size(width, height), INTER_NEAREST);

    // 阈值化
    mask = mask(temp_rect - Point(left, top)) > mask_threshold;
    output.boxMask = mask;
}

void DrawPred(Mat& img, vector<OutputSeg> result, std::vector<std::string> classNames, vector<Scalar> color) {
    Mat mask = img.clone();
    for (int i=0; i< result.size(); i++){
        int left, top;
        left = result[i].box.x;
        top = result[i].box.y;
        int color_num =i;

        // 目标画框
        rectangle(img, result[i].box, color[result[i].id], 2, 8);

        // 目标mask,这里非目标像素值为0
        mask(result[i].box).setTo(color[result[i].id], result[i].boxMask);
        string label = classNames[result[i].id] + ":" + to_string(result[i].confidence);

        // 框左上角打印信息
        int baseLine;
        Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, color[result[i].id], 2);
    }

    addWeighted(img, 0.5, mask, 0.5, 0, img);
}
分割的调用代码测试案例

void frmMain::test_yoloseg()
{
    string model_path = "20231001segquanjing.onnx";
    YoloSeg test;
    Net net;
    if (test.ReadModel(net, model_path, true)) {
        cout << "read net ok!" << endl;
    }
    else {
        return ;
    }
    vector<OutputSeg> result;
    cv::Mat img_seg_test=cv::imread("E:/data_seg/quanjingCameraPicture2/1/segdata2278.jpg");


    bool find = test.Detect(img_seg_test, net, result);

    if (find) {
        DrawPred(img_seg_test, result, test._className, color);
    }
    else {
        cout << "Detect Failed!"<<endl;
    }


    string label = "steel:" ; //ms
    putText(img_seg_test, label, Point(30,30), FONT_HERSHEY_SIMPLEX,0.5, Scalar(0,0,255), 2, 8);

    QPixmap img_test_xmap= my_publiction.cvMatToQPixmap(img_seg_test);
    // 设置QLabel的最小尺寸
    ui->lab1->setMinimumSize(600, 600);
    ui->lab1->setScaledContents(true);
    img_test_xmap = img_test_xmap.scaled( ui->lab1->width(),  ui->lab1->height(), Qt::KeepAspectRatio,Qt::SmoothTransformation); // 将图像缩放到QLabel的大小
    ui->lab1->setPixmap(img_test_xmap);
//    imshow("result", img_seg_test);



}

 分割的效果图如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1055083.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring的注解开发-非自定义Bean的配置

非自定义Bean注解开发 非自定义Bean不能象自定义Bean一样使用Component注解及其衍生注解进行管理&#xff0c;非自定义Bean要通过工厂的方式进行实例化&#xff0c;使用Bean标注即可&#xff0c;Bean的属性为beanName&#xff0c;使用Bean注解作用在方法中&#xff0c;通过定义…

一个高精度24位ADC芯片ADS1222的使用方法及参考电路程序成都控制器定制

前一段时间&#xff0c;在做单片机、PLC、电路板、控制器/箱、仪器仪表、机电设备或系统、自动化、工控、传感、数据采集、自控系统、控制系统&#xff0c;物联网&#xff0c;电子产品&#xff0c;软件、APP开发设计定制定做开发项目时&#xff0c;有要求用到24位的高精度ADC&a…

Flutter笔记 - 用于描述Align的Alignment、AlignmentDirectional、AlignmentTween类

Flutter笔记 用于描述Align的Alignment、AlignmentDirectional、AlignmentTween类 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_…

问题: 视频颜色问题,偏绿

参考 什么是杜比视界&#xff1f; - https://www.youtube.com/watch?vldXDQ6VlC7g 【哈士亓说】07&#xff1a;HDR、杜比视界究竟是个啥&#xff1f;为什么这个视频还不是HDR视频&#xff1f; - https://www.youtube.com/watch?vrgb9Xg3cJns 正文 视频应该是 杜比视界 电…

【C++漂流记】C++对象模型和this指针

C中对象模型和this指针是面向对象编程中的重要概念。对象模型描述了对象在内存中的布局和行为&#xff0c;包括成员变量和成员函数的存储方式和访问权限。this指针是一个隐含的指针&#xff0c;指向当前对象的地址&#xff0c;用于在成员函数中引用当前对象的成员变量和成员函数…

力扣 -- 416. 分割等和子集(01背包问题)

解题步骤&#xff1a; 参考代码&#xff1a; 未优化代码&#xff1a; class Solution { public:bool canPartition(vector<int>& nums) {int nnums.size();int sum0;for(const auto& e:nums){sume;}if(sum%21){return false;}int aimsum/2;//多开一行&#xff…

前端页面初步开发

<template><div><el-card class"box-card" style"height: 620px"><el-input v-model"query.name" style"width:200px" placeholder"请输入用户姓名"></el-input>&nbsp&nbsp&nbsp…

cesium 雷达扫描 (线行扩散效果)

cesium 雷达扫描 (线行扩散效果) 1、实现方法 使用ellipse方法加载圆型,修改ellipse中material方法来实现效果 2、示例代码 2.1、 <!DOCTYPE html> <html lang="en"><head><<

[Spring] Spring5——IOC 简介(二)

目录 六、工厂 Bean&#xff08;Factory&#xff09; 1、普通 bean 2、工厂 bean 3、示例 七、Bean 的作用域 1、单例和多例 2、如何设置为单实例或多实例 八、Bean 的生命周期 1、生命周期 2、生命周期示例 3、Bean 的后置处理器 4、后置处理器示例 九、XML 的自…

JavaScript设计模式

✨JavaScript设计模式 &#x1f380;设计模式 在 面向对象软件设计中针对特定问题的简洁而优雅的解决方案 &#x1f390;常见的设计模式 &#x1f384;1. 工厂模式 在JavaScript中&#xff0c;工厂模式的表现形式就是一个调用即可返回新对象的函数 // ------------- 工厂模…

gitlab配置webhook限制提交注释

一、打开gitlab相关配置项 vim /etc/gitlab/gitlab.rb gitlab_shell[custom_hooks_dir] "/etc/gitlab/custom_hooks" 二、创建相关文件夹 mkdir -p /etc/gitlab/custom_hooks mkdir -p /etc/gitlab/custom_hooks/post-receive.d mkdir -p /etc/gitlab/custom_h…

springboot和vue:九、v-for中的key+vue组件化开发

v-for中的key 目的 现在想要实现这样的一种效果&#xff0c;页面上存在初始姓名表单&#xff0c;同时存在输入框&#xff0c;输入姓名后点击添加按钮可以将新输入的姓名加入显示的姓名表单中。 代码 <!DOCTYPE html> <html lang"en"><head><…

数学建模Matlab之数据预处理方法

本文综合代码来自文章http://t.csdnimg.cn/P5zOD 异常值与缺失值处理 %% 数据修复 % 判断缺失值和异常值并修复&#xff0c;顺便光滑噪音&#xff0c;渡边笔记 clc,clear;close all; x 0:0.06:10; y sin(x)0.2*rand(size(x)); y(22:34) NaN; % 模拟缺失值 y(89:95) 50;% 模…

Mars3d的graphic/entity/model示例的glb的ModelEntity修改颜色失效说明

1.Mars3d的graphic/entity/model示例的glb的ModelEntity修改颜色失效说明 2.测试时发现示例的glb的ModelEntity使用setStyle()修改颜色没成功 setTimeout(() > { graphicModel.setStyle({ color: "red" }) }, 500) 相关链接 1.http://mars3d.cn/editor-vue.html?…

使用sqlmap总是提示需要302跳转重新登录的解决方法

如果在命令中不指定cookie&#xff0c;sqlmap在执行时会提示需要重新登录 如果给了cookie但发现还是提示需要重新登录&#xff0c;且按它给的提示发现还是找不到注入点&#xff0c;原因是url没有加引号 url加了双引号后解决问题

MySQL在线修改表结构-PerconaTookit工具

在线修改表结构必须慎重 在业务系统 运行 过程中随意删改字段&#xff0c;会 造成重大事故。 常规的做法是&#xff1a;业务停机&#xff0c;再 维护表结构 比如&#xff1a;12306 凌晨 0 点到早上 7 点是停机维护 如果是不影响正常业务的表结构是允许在线修改的。 比如&…

16数据处理

plotly 设置x/y轴名称 yaxis_title‘金额(元)’,xaxis_title‘日期’ fig px.line(df_grouped, x"Order_time", y"Money", title日销图) fig.update_layout(yaxis_title金额(元),xaxis_title日期, xaxis_tickformat%Y-%m-%d,yaxis_tickformat 0.2f) fig…

多线程案例 - 单例模式

单例模式 ~~ 单例模式是常见的设计模式之一 什么是设计模式 你知道象棋,五子棋,围棋吗?如果,你想下好围棋,你就不得不了解一个东西,”棋谱”,设计模式好比围棋中的 “棋谱”. 在棋谱里面,大佬们,把一些常见的对局场景,都给推演出来了,照着棋谱来下棋,基本上棋力就不会差到哪…

面试必考精华版Leetcode437. 路径总和 III

题目&#xff1a; 代码&#xff08;首刷看解析&#xff0c;暴力法&#xff09;&#xff1a; class Solution { public:long rootSum(TreeNode* root,long targetSum){if(!root) return 0;long res0;if(root->valtargetSum){res;} resrootSum(root->left,targetSum-root-…

2022年9月及10月

9月 1.Halcon12的HObject和Hobject halcon12 可以用HObject&#xff0c;也可以用Hobject&#xff0c;用法都一样 包括HalconCpp.h 如果附加目录中&#xff1a; C:\Program Files\MVTec\HALCON-12.0\include\halconcpp\ 在前面&#xff0c;则用 HalconCpp::HObject 如果附加目录…