竞赛 基于设深度学习的人脸性别年龄识别系统

news2024/11/25 0:34:54

文章目录

  • 0 前言
  • 1 课题描述
  • 2 实现效果
  • 3 算法实现原理
    • 3.1 数据集
    • 3.2 深度学习识别算法
    • 3.3 特征提取主干网络
    • 3.4 总体实现流程
  • 4 具体实现
    • 4.1 预训练数据格式
    • 4.2 部分实现代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习机器视觉的人脸性别年龄识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题描述

随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越发广泛。如医疗影像识别、无人驾驶车载视觉、通用物体识别、自然场景下的文本识别等,根据不同的应用场景,人脸研究方向可以分为人脸检测、身份识别、性别识别、年龄预测、种族识别、表情识别等。近年来,人脸身份识别技术发展迅猛,在生活应用中取得了较好的效果,也逐渐趋于成熟,而年龄识别与性别预测,仍然是生物特征识别研究领域中一项具有挑战性的课题。

课题意义

相比人脸性别属性而言,人脸年龄属性的研究更富有挑战性。主要有两点原因,首先每个人的年龄会随着身体健康状况、皮肤保养情况而表现得有所不同,即便是在同一年,表现年龄会随着个人状态的不同而改变,人类识别尚且具有较高难度。其次,可用的人脸年龄估计数据集比较少,不同年龄的数据标签收集不易,现有大多数的年龄数据集都是在不同的复杂环境下的照片、人脸图片存在光照变化较复杂、部分遮挡、图像模糊、姿态旋转角度较大等一系列问题,对人脸模型的鲁棒性产生了较大的影响。

2 实现效果

这里废话不多说,先放上大家最关心的实现效果:

输入图片:
在这里插入图片描述

识别结果:

在这里插入图片描述

或者实时检测
在这里插入图片描述
在这里插入图片描述

3 算法实现原理

3.1 数据集

学长收集的数据集:
该人脸数据库的图片来源于互联网的爬取,而非研究机构整理,一共含有13000多张人脸图像,在这个数据集中大约有1860张图片是成对出现的,即同一个人的2张不同照片,有助于人脸识别算法的研究,图像标签中标有人的身份信息,人脸坐标,关键点信息,可用于人脸检测和人脸识别的研究,此数据集是对人脸算法效果验证的权威数据集.

在这里插入图片描述
该数据集包含的人脸范围比较全面,欧亚人种都有。

3.2 深度学习识别算法

卷积神经网络是常见的深度学习架构,而在CNN出现之前,图像需要处理的数据量过大,导致成本很高,效率很低,图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高。CNN的出现使得提取特征的能力变得更强,为更多优秀网络的研究提供了有力的支撑。CNN的核心思想是利用神经网络模拟人脑视觉神经系统,构造多个神经元并建立彼此之间的联系。不同的神经元进行分工,浅层神经元处理低纬度图像特征,深层神经元处理图像高级特征、语义信息等,CNN的网络结构主要由卷积层、BN层、激活层、池化层、全连接层、损失函数层构成,多个层协同工作实现了特征提取的功能,并通过特有的网络结构降低参数的数量级,防止过拟合,最终得到输出结果.

CNN传承了多层感知机的思想,并受到了生物神经科学的启发,通过卷积的运算模拟人类视觉皮层的“感受野”。不同于传统的前馈神经网络,卷积运算对图像的区域值进行加权求和,最终以神经元的形式进行输出。前馈神经网络对每一个输入的信号进行加权求和:

  • (a)图是前馈神经网络的连接方式
  • (b)图是CNN的连接方式。

在这里插入图片描述
cnn框架如下:
在这里插入图片描述

3.3 特征提取主干网络

在深度学习算法研究中,通用主干特征提取网络结合特定任务网络已经成为一种标准的设计模式。特征提取对于分类、识别、分割等任务都是至关重要的部分。下面介绍本文研究中用到的主干神经网络。

ResNet网络
ResNet是ILSVRC-2015的图像分类任务冠军,也是CVPR2016的最佳论文,目前应用十分广泛,ResNet的重要性在于将网络的训练深度延伸到了数百层,而且取得了非常好的效果。在ResNet出现之前,网络结构一般在20层左右,对于一般情况,网络结构越深,模型效果就会越好,但是研究人员发现加深网络反而会使结果变差。

在这里插入图片描述

人脸特征提取我这里选用ResNet,网络结构如下:
在这里插入图片描述

3.4 总体实现流程

在这里插入图片描述

4 具体实现

4.1 预训练数据格式

在这里插入图片描述

在这里插入图片描述

4.2 部分实现代码

训练部分代码:



    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    from six.moves import xrange
    from datetime import datetime
    import time
    import os
    import numpy as np
    import tensorflow as tf
    from data import distorted_inputs
    from model import select_model
    import json
    import re


    LAMBDA = 0.01
    MOM = 0.9
    tf.app.flags.DEFINE_string('pre_checkpoint_path', '',
                               """If specified, restore this pretrained model """
                               """before beginning any training.""")
    
    tf.app.flags.DEFINE_string('train_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0',
                               'Training directory')
    
    tf.app.flags.DEFINE_boolean('log_device_placement', False,
                                """Whether to log device placement.""")
    
    tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,
                                'Number of preprocessing threads')
    
    tf.app.flags.DEFINE_string('optim', 'Momentum',
                               'Optimizer')
    
    tf.app.flags.DEFINE_integer('image_size', 227,
                                'Image size')
    
    tf.app.flags.DEFINE_float('eta', 0.01,
                              'Learning rate')
    
    tf.app.flags.DEFINE_float('pdrop', 0.,
                              'Dropout probability')
    
    tf.app.flags.DEFINE_integer('max_steps', 40000,
                              'Number of iterations')
    
    tf.app.flags.DEFINE_integer('steps_per_decay', 10000,
                                'Number of steps before learning rate decay')
    tf.app.flags.DEFINE_float('eta_decay_rate', 0.1,
                              'Learning rate decay')
    
    tf.app.flags.DEFINE_integer('epochs', -1,
                                'Number of epochs')
    
    tf.app.flags.DEFINE_integer('batch_size', 128,
                                'Batch size')
    
    tf.app.flags.DEFINE_string('checkpoint', 'checkpoint',
                              'Checkpoint name')
    
    tf.app.flags.DEFINE_string('model_type', 'default',
                               'Type of convnet')
    
    tf.app.flags.DEFINE_string('pre_model',
                                '',#'./inception_v3.ckpt',
                               'checkpoint file')
    FLAGS = tf.app.flags.FLAGS
    
    # Every 5k steps cut learning rate in half
    def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
    
        print('decay [%f] every [%d] steps' % (decay_rate, at_step))
        def _decay(lr, global_step):
            return tf.train.exponential_decay(lr, global_step,
                                              at_step, decay_rate, staircase=True)
        return _decay
    
    def optimizer(optim, eta, loss_fn, at_step, decay_rate):
        global_step = tf.Variable(0, trainable=False)
        optz = optim
        if optim == 'Adadelta':
            optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
            lr_decay_fn = None
        elif optim == 'Momentum':
            optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
            lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
    
        return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta, optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
    
    def loss(logits, labels):
        labels = tf.cast(labels, tf.int32)
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=labels, name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)
        losses = tf.get_collection('losses')
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = cross_entropy_mean + LAMBDA * sum(regularization_losses)
        tf.summary.scalar('tl (raw)', total_loss)
        #total_loss = tf.add_n(losses + regularization_losses, name='total_loss')
        loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
        loss_averages_op = loss_averages.apply(losses + [total_loss])
        for l in losses + [total_loss]:
            tf.summary.scalar(l.op.name + ' (raw)', l)
            tf.summary.scalar(l.op.name, loss_averages.average(l))
        with tf.control_dependencies([loss_averages_op]):
            total_loss = tf.identity(total_loss)
        return total_loss
    
    def main(argv=None):
        with tf.Graph().as_default():
    
            model_fn = select_model(FLAGS.model_type)
            # Open the metadata file and figure out nlabels, and size of epoch
            input_file = os.path.join(FLAGS.train_dir, 'md.json')
            print(input_file)
            with open(input_file, 'r') as f:
                md = json.load(f)
    
            images, labels, _ = distorted_inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
            logits = model_fn(md['nlabels'], images, 1-FLAGS.pdrop, True)
            total_loss = loss(logits, labels)
    
            train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss, FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
            saver = tf.train.Saver(tf.global_variables())
            summary_op = tf.summary.merge_all()
    
            sess = tf.Session(config=tf.ConfigProto(
                log_device_placement=FLAGS.log_device_placement))
    
            tf.global_variables_initializer().run(session=sess)
    
            # This is total hackland, it only works to fine-tune iv3
            if FLAGS.pre_model:
                inception_variables = tf.get_collection(
                    tf.GraphKeys.VARIABLES, scope="InceptionV3")
                restorer = tf.train.Saver(inception_variables)
                restorer.restore(sess, FLAGS.pre_model)
    
            if FLAGS.pre_checkpoint_path:
                if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
                    print('Trying to restore checkpoint from %s' % FLAGS.pre_checkpoint_path)
                    restorer = tf.train.Saver()
                    tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
                    print('%s: Pre-trained model restored from %s' %
                          (datetime.now(), FLAGS.pre_checkpoint_path))


            run_dir = '%s/run-%d' % (FLAGS.train_dir, os.getpid())
    
            checkpoint_path = '%s/%s' % (run_dir, FLAGS.checkpoint)
            if tf.gfile.Exists(run_dir) is False:
                print('Creating %s' % run_dir)
                tf.gfile.MakeDirs(run_dir)
    
            tf.train.write_graph(sess.graph_def, run_dir, 'model.pb', as_text=True)
    
            tf.train.start_queue_runners(sess=sess)


            summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
            steps_per_train_epoch = int(md['train_counts'] / FLAGS.batch_size)
            num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs * steps_per_train_epoch
            print('Requested number of steps [%d]' % num_steps)



            for step in xrange(num_steps):
                start_time = time.time()
                _, loss_value = sess.run([train_op, total_loss])
                duration = time.time() - start_time
    
                assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
    
                if step % 10 == 0:
                    num_examples_per_step = FLAGS.batch_size
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = float(duration)
                    
                    format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ' 'sec/batch)')
                    print(format_str % (datetime.now(), step, loss_value,
                                        examples_per_sec, sec_per_batch))
    
                # Loss only actually evaluated every 100 steps?
                if step % 100 == 0:
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, step)
                    
                if step % 1000 == 0 or (step + 1) == num_steps:
                    saver.save(sess, checkpoint_path, global_step=step)
    
    if __name__ == '__main__':
        tf.app.run()



5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1053914.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows server 2019 、win11安装docker desktop

Docker Desktop Docker Desktop是可以部署在windows运行docker的应用服务&#xff0c;其基于windos的Hyper-V服务和WSL2内核在windos上创建一个子系统(linux)&#xff0c;从而实现其在windows上运行docker。 前提条件 WSL 查看wsl是否安装 我们可以直接在 cmd 或 powershe…

软件过程的介绍

软件过程概述 软件的诞生和生命周期是一个过程&#xff0c;我们总体上称这个过程为软件过程。软件过程是为了开发出软件产品&#xff0c;或者是为了完成软件工程项目而需要完成的有关软件工程的活动&#xff0c;每一项活动又可以分为一系列的工程任务。任何一个软件开发组织&a…

在2023年使用Unity2021从Built-in升级到Urp可行么

因为最近在做WEbgl平台&#xff0c;所以某些不可抗力原因&#xff0c;需要使用Unity2021开发&#xff0c;又由于不可明说原因&#xff0c;想用Urp&#xff0c;怎么办&#xff1f; 目录 创建RenderAsset 关联Asset 暴力转换&#xff08;Menu->Edit&#xff09; 单个文件…

贪心找性质+dp表示+矩阵表示+线段树维护:CF573D

比较套路的题目 首先肯定贪心一波&#xff0c;两个都排序后尽量相连。我一开始猜最多跨1&#xff0c;但其实最多跨2&#xff0c;考虑3个人的情况&#xff1a; 我们发现第3个人没了&#xff0c;所以可以出现跨2的情况 然后直接上dp&#xff0c;由 i − 1 , i − 2 , i − 3 i…

maven无法下载时的解决方法——笔记

右键项目然后点击创建setting.xml&#xff08;因为现在创建了&#xff0c;所以没显示了&#xff0c;可以直接点击打开setting.xml&#xff09; 然后添加 <mirror><id>nexus-aliyun</id><mirrorOf>*,!jeecg,!jeecg-snapshots</mirrorOf><name…

stm32 - GPIO

stm32 - GPIO GPIO结构图GPIO原理图输入上拉/下拉/浮空施密特触发器片上外设 输出推挽/开漏/关闭输出方式 GPIO88种模式复用输出 GPIO寄存器端口配置寄存器_CRL端口输入数据寄存器_IDR端口输出数据寄存器_ODR端口位设置/清除寄存器_BSRR端口位清除寄存器_BRR端口配置锁定寄存器…

《Jetpack Compose从入门到实战》 第二章 了解常用UI组件

目录 常用的基础组件文字组件图片组件按钮组件选择器组件对话框组件进度条组件 常用的布局组件布局Scaffold脚手架 列表 书附代码 Google的图标库 常用的基础组件 文字组件 Composable fun TestText() {Column(modifier Modifier.verticalScroll(state rememberScrollState…

ESP32官方MPU6050组件介绍

前言 &#xff08;1&#xff09;因为我需要使用MPU6050的组件&#xff0c;但是又需要在这条I2C总线上挂载多个设备&#xff0c;所以我本人打算自己对官方的MPU6050的组件进行微调。建立一个I2C总线&#xff0c;设备依赖于这个总线挂载。 &#xff08;2&#xff09;既然要做移植…

list(链表)

文章目录 功能迭代器的分类sort函数&#xff08;排序&#xff09;merage&#xff08;归并&#xff09;unique(去重&#xff09;removesplice&#xff08;转移&#xff09; 功能 这里没有“[]"的实现&#xff1b;原因&#xff1a;实现较麻烦&#xff1b;这里使用迭代器来实…

vue3基础语法

2020年9月18日发布 2022年2月7日称为默认版本&#xff0c;意味vue3是现在也是未来 Ant Design Pc端组件库 Element Plus Pc端组件库 Vant 移动端 VueUse 基于composition 组合式api的常用函数集合 vue3中文文档&#xff1a;https://cn.vuejs.org/guide/introduction.html…

pandas_datareader读取yahoo金融数据超时问题timeout解决方案

在《Python金融数据挖掘》一书中&#xff0c;学习到网络数据源这一章节&#xff0c;利用书中的方法安装了pandas_datareader包&#xff0c;但在获取雅虎数据&#xff08;get_data_yahoo&#xff09;时会出现以下问题&#xff1a; 经过仔细分析和尝试&#xff0c;排除了yahoo受中…

2023年中国智能电视柜产量、需求量、市场规模及行业价格走势[图]

电视柜是随着电视机的发展和普及而演变出的家具种类&#xff0c;其主要作用是承载电视机&#xff0c;又称视听柜&#xff0c;随着生活水平的提高&#xff0c;与电视机相配套的电器设备也成为电视柜的收纳对象。 随着智能家具的发展&#xff0c;智能电视机柜的造型和风格都是有了…

2023/10/1 -- ARM

今日任务&#xff1a;select实现服务器并发 ser.c&#xff1a; #include <myhead.h>#define ERR_MSG(msg) do{\printf("%d\n",__LINE__);\perror(msg);\ }while(0)#define PORT 8888#define IP "192.168.1.5"int main(int argc, const char *argv[…

Java中DateTimeFormatter的使用方法和案例

&#x1f514;简介 在Java中,DateTimeFormatter类用于格式化和解析日期时间对象。它是日期时间格式化的强大而灵活的工具。 &#x1f514;作用 &#x1f335;1.本地化时间 本地化时间指根据指定的语言环境显示时间 1.1.创建DateTimeFormatter时指定Locale DateTimeFormatt…

ORA-01034: ORACLE not available?一文解决

1.情况描述 oracle用户sqlplus登陆数据库&#xff08;11gR2 单机asm&#xff09;&#xff0c;进去查询一些基本的视图发现报错 ORA-01034: ORACLE not available&#xff0c;详细如下 [oracleoomcserver db_1]$ sqlplus / as sysdba SQL*Plus: Release 11.2.0.4.0 Production…

ClassNotFoundException与NoClassDefFoundError

如果这springboot服务启动时两个报错同时出现&#xff0c;那大概率是依赖间冲突导致的 查资料发现是springcloud的依赖版本和springboot的依赖版本不兼容&#xff0c;顺藤摸瓜找到springcloud jar包中调用org.springframework.boot.context.properties.ConfigurationProperties…

酷开科技OTT大屏营销,做好价值塑造

洞察2023&#xff0c;随着技术与数据入局OTT领域&#xff0c;程序化投放、数据追踪、人群定位等等能力正逐步深入&#xff0c;围绕OTT大屏营销&#xff0c;新营销的价值也正在被重构。随着国内5G、人工智能、云计算等技术不断普及&#xff0c;大屏营销服务成为OTT行业发展的主流…

笔试强训Day9

T1&#xff1a;走方格的方案数 链接&#xff1a;走方格的方案数_牛客题霸_牛客网 (nowcoder.com) 描述 请计算n*m的棋盘格子&#xff08;n为横向的格子数&#xff0c;m为竖向的格子数&#xff09;从棋盘左上角出发沿着边缘线从左上角走到右下角&#xff0c;总共有多少种走法…

SpringCloud Alibaba - Sentinel 微服务保护解决雪崩问题、Hystrix 区别、安装及使用

目录 一、Sentinel 1.1、背景&#xff1a;雪崩问题 1.2、雪崩问题的解决办法 1.2.1、超时处理 缺陷&#xff1a;为什么这里只是 “缓解” 雪崩问题&#xff0c;而不是百分之百解决了雪问题呢&#xff1f; 1.2.2、舱壁模式 缺陷&#xff1a;资源浪费 1.2.3、熔断降级 1.…

【汇编的救赎】汇编语言入门必看基本知识点

汇编语言是一种低级语言&#xff0c;用于编写计算机程序。它直接操作计算机硬件&#xff0c;提供了对处理器寄存器、内存和指令等底层资源的直接访问。汇编语言的语法简单明了&#xff0c;每条指令都对应着一条机器指令&#xff0c;具有高度的灵活性和效率。通过汇编语言&#…