文章目录
- 1、Kafka介绍
- 1.1、MQ的作用
- 1.2、为什么要用Kafka
- 2、Kafka快速上手
- 2.1、实验环境
- 2.2、单机服务体验
- 2.3、理解Kakfa的消息传递机制
1、Kafka介绍
ChatGPT对于Apache Kafka的介绍:
Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发并于2011年开源。它主要用于解决大规模数据的实时流式处理和数据管道问题。
Kafka是一个分布式的发布-订阅消息系统,可以快速地处理高吞吐量的数据流,并将数据实时地分发到多个消费者中。Kafka消息系统由多个broker(服务器)组成,这些broker可以在多个数据中心之间分布式部署,以提供高可用性和容错性。
Kafka的基本架构由生产者、消费者和主题(topic)组成。生产者可以将数据发布到指定的主题,而消费者可以订阅这些主题并消费其中的数据。同时,Kafka还支持数据流的处理和转换,可以在管道中通过Kafka Streams API进行流式计算,例如过滤、转换、聚合等。
Kafka使用高效的数据存储和管理技术,能够轻松地处理TB级别的数据量。其优点包括高吞吐量、低延迟、可扩展性、持久性和容错性等。
Kafka在企业级应用中被广泛应用,包括实时流处理、日志聚合、监控和数据分析等方面。同时,Kafka还可以与其他大数据工具集成,如Hadoop、Spark和Storm等,构建一个完整的数据处理生态系统。
1.1、MQ的作用
MQ:MessageQueue,消息队列。 队列,是一种FIFO 先进先出的数据结构。消息则是跨进程传递的数据。一个典型的MQ系统,会将消息消息由生产者发送到MQ进行排队,然后根据一定的顺序交由消息的消费者进行处理。
QQ和微信就是典型的MQ。只不过他对接的使用对象是人,而Kafka需要对接的使用对象是应用程序。
MQ的作用主要有以下三个方面:
-
异步
- 例子:快递员发快递,直接到客户家效率会很低。引入菜鸟驿站后,快递员只需要把快递放到菜鸟驿站,就可以继续发其他快递去了。客户再按自己的时间安排去菜鸟驿站取快递。
- 作用:异步能提高系统的响应速度、吞吐量。
-
解耦
- 例子:《Thinking in JAVA》很经典,但是都是英文,我们看不懂,所以需要编辑社,将文章翻译成其他语言,这样就可以完成英语与其他语言的交流。
- 作用:
1、服务之间进行解耦,才可以减少服务之间的影响。提高系统整体的稳定性以及可扩展性。
2、另外,解耦后可以实现数据分发。生产者发送一个消息后,可以由一个或者多个消费者进行消费,并且消费者的增加或者减少对生产者没有影响。
-
削峰
- 例子:长江每年都会涨水,但是下游出水口的速度是基本稳定的,所以会涨水。引入三峡大坝后,可以把水储存起来,下游慢慢排水。
- 作用:以稳定的系统资源应对突发的流量冲击。
1.2、为什么要用Kafka
一个典型的日志聚合的应用场景:
业务场景决定了产品的特点。
-
数据吞吐量很大: 需要能够快速收集各个渠道的海量日志
-
集群容错性高:允许集群中少量节点崩溃
-
功能不需要太复杂:Kafka的设计目标是高吞吐、低延迟和可扩展,主要关注消息传递而不是消息处理。所以,Kafka并没有支持死信队列、顺序消息等高级功能。
-
允许少量数据丢失:Kafka本身也在不断优化数据安全问题,目前基本上可以认为Kafka可以做到不会丢数据。
2、Kafka快速上手
2.1、实验环境
准备了三台虚拟机 192.168.232.128~130,预备搭建三台机器的集群。
三台机器均预装CentOS7 操作系统。分别配置机器名 worker1,worker2,worker3。
vi /etc/hosts
192.168.232.128 worker1
192.168.232.129 worker2
192.168.232.130 worker3
然后需要关闭防火墙(实验环境建议关闭)。
firewall-cmd --state 查看防火墙状态
systemctl stop firewalld.service 关闭防火墙
然后三台机器上都需要安装JAVA。
下载kafka,选择当前最新的3.2.0版本。下载地址:https://kafka.apache.org/downloads 选择kafka_2.13-3.4.0.tgz进行下载。
关于kafka的版本,前面的2.13是开发kafka的scala语言的版本,后面的3.4.0是kafka应用的版本。
Scala是一种运行于JVM虚拟机之上的语言。在运行时,只需要安装JDK就可以了,选哪个Scala版本没有区别。但是如果要调试源码,就必须选择对应的Scala版本。因为Scala语言的版本并不是向后兼容的。
另外,在选择kafka版本时,建议先去kafka的官网看下发布日志,了解一下各个版本的特性。 https://kafka.apache.org/downloads。 例如3.2.0版本开始将log4j日志框架替换成了reload4j,这也是应对2021年log4j框架爆发严重BUG后的一种应对方法。
下载Zookeeper,下载地址 https://zookeeper.apache.org/releases.html ,Zookeeper的版本并没有强制要求,这里我们选择比较新的3.6.1版本。
kafka的安装程序中自带了Zookeeper,可以在kafka的安装包的libs目录下查看到zookeeper的客户端jar包。但是,通常情况下,为了让应用更好维护,我们会使用单独部署的Zookeeper,而不使用kafka自带的Zookeeper。
下载完成后,将这两个工具包上传到三台服务器上,解压后,分别放到/app/kafka和/app/zookeeper目录下。并将部署目录下的bin目录路径配置到path环境变量中。
2.2、单机服务体验
下载下来的Kafka安装包不需要做任何的配置,就可以直接单击运行。这通常是快速了解Kafka的第一步。
1、启动Kafka之前需要先启动Zookeeper。这里就用Kafka自带的Zookeeper。启动脚本在bin目录下。
cd $KAKFKA_HOME
nohup bin/zookeeper-server-start.sh config/zookeeper.properties &
注意下脚本是不是有执行权限。
从nohup.out中可以看到zookeeper默认会在2181端口启动。通过jps指令看到一个QuorumPeerMain进程,确定服务启动成功。
2、启动Kafka。
nohup bin/kafka-server-start.sh config/server.properties &
启动完成后,使用jps指令,看到一个kafka进程,确定服务启动成功。服务会默认在9092端口启动。
3、简单收发消息
Kafka的基础工作机制是消息发送者可以将消息发送到kafka上指定的topic,而消息消费者,可以从指定的topic上消费消息。
首先,可以使用Kafka提供的客户端脚本创建Topic
#创建Topic
bin/kafka-topics.sh --create --topic test --bootstrap-server localhost:9092
#查看Topic
bin/kafka-topics.sh --describe --topic test --bootstrap-server localhost:9092
然后,启动一个消息发送者端。往一个名为test的Topic发送消息。
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
当命令行出现 > 符号后,随意输入一些字符。Ctrl+C 退出命令行。这样就完成了往kafka发消息的操作。
然后启动一个消息消费端,从名为test的Topic上接收消息。
[oper@worker1 kafka_2.13-3.2.0]$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test
qwe
qwe
123
123
123
^CProcessed a total of 5 messages
这样就完成了一个基础的交互。这其中,生产者和消费者并不需要同时启动。他们之间可以进行数据交互,但是又并不依赖于对方。没有生产者,消费者依然可以正常工作,反过来,没有消费者,生产者也依然可以正常工作。这也体现出了生产者和消费者之间的解耦。
如果想要查看这个脚本的详细参数,可以直接访问这个脚本,不配置任何参数即可。
4、其他消费模式
之前我们通过kafka提供的生产者和消费者脚本,启动了一个简单的消息生产者以及消息消费者,实际上,kafka还提供了丰富的消息消费方式。
指定消费进度
通过kafka-console.consumer.sh启动的控制台消费者,会将获取到的内容在命令行中输出。如果想要消费之前发送的消息,可以通过添加–from-begining参数指定。
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic test
如果需要更精确的消费消息,甚至可以指定从哪一条消息开始消费。
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --partition 0 --offset 4 --topic test
这表示从第0号Partition上的第四个消息开始读起。Partition和Offset是什么呢,可以用以下指令查看。
分组消费
对于每个消费者,可以指定一个消费者组。kafka中的同一条消息,只能被同一个消费者组下的某一个消费者消费。而不属于同一个消费者组的其他消费者,也可以消费到这一条消息。在kafka-console-consumer.sh脚本中,可以通过–consumer-property group.id=testGroup来指定所属的消费者组。例如,可以启动三个消费者组,来验证一下分组消费机制:
#两个消费者实例属于同一个消费者组
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --consumer-property group.id=testGrroup --topic test
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --consumer-property group.id=testGrroup --topic test
#这个消费者实例属于不同的消费者组
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --consumer-property group.id=testGrroup2 --topic test
查看消费者组的偏移量
接下来,还可以使用kafka-consumer-groups.sh观测消费者组的情况。包括他们的消费进度。
bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --group testGroup
2.3、理解Kakfa的消息传递机制
从之前的实验可以看到, Kafka的消息发送者和消息消费者通过Topic这样一个逻辑概念来进行业务沟通。但是实际上,所有的消息是存在服务端的Partition这样一个数据结构当中的。
在Kafka的技术体系中,有以下一些概念:
- 客户端Client: 包括消息生产者 和 消息消费者。之前简单接触过。
- 消费者组:每个消费者可以指定一个所属的消费者组,相同消费者组的消费者共同构成一个逻辑消费者组。每一个消息会被多个感兴趣的消费者组消费,但是在每一个消费者组内部,一个消息只会被消费一次。
- 服务端Broker:一个Kafka服务器就是一个Broker。
- 话题Topic:这是一个逻辑概念,一个Topic被认为是业务含义相同的一组消息。客户端都通过绑定Topic来生产或者消费自己感兴趣的话题。
- 分区Partition:Topic只是一个逻辑概念,而Partition就是实际存储消息的组件。每个Partiton就是一个queue队列结构。所有消息以FIFO先进先出的顺序保存在这些Partition分区中。