27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)

news2024/11/24 2:38:45

Flink 系列文章

1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接

13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)

16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)

20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上

22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs

26、Flink 的SQL之概览与入门示例
27、Flink 的SQL之SELECT (select、where、distinct、order by、limit、集合操作和去重)介绍及详细示例(1)
27、Flink 的SQL之SELECT (SQL Hints 和 Joins)介绍及详细示例(2)
27、Flink 的SQL之SELECT (窗口函数)介绍及详细示例(3)
27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
27、Flink 的SQL之SELECT (Top-N、Window Top-N 窗口 Top-N 和 Window Deduplication 窗口去重)介绍及详细示例(6)
27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)

30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)

41、Flink之Hive 方言介绍及详细示例
42、Flink 的table api与sql之Hive Catalog
43、Flink之Hive 读写及详细验证示例
44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例–网上有些说法好像是错误的


文章目录

  • Flink 系列文章
  • 一、模式检测
    • 1、介绍及示例
      • 1)、介绍
      • 2)、示例
    • 2、分区
    • 3、事件顺序
    • 4、Define & Measures
      • 1)、Aggregations
      • 2)、示例
    • 5、定义模式
      • 1)、贪婪量词和勉强量词
      • 2)、时间约束
    • 6、输出方式
    • 7、模式导航
      • 1)、引用模式变量
      • 2)、Logical Offsets
    • 8、匹配后的策略
      • 1)、环境/数据准备
      • 2)、AFTER MATCH SKIP PAST LAST ROW示例
      • 3)、AFTER MATCH SKIP TO NEXT ROW示例
      • 4)、AFTER MATCH SKIP TO LAST variable 示例
      • 5)、AFTER MATCH SKIP TO FIRST variable 示例
    • 9、时间属性
    • 10、控制内存消耗
    • 11、已知的局限


本文介绍了Flink 的模式检测,以及每个可运行的示例、运行结果的图示分析。
本文依赖flink和hadoop集群能正常使用。
本文通过模式检测的语法,根据语法逐个介绍了其用法以及详细的示例,同时也列出了其局限性。

一、模式检测

搜索一组事件模式(event pattern)是一种常见的用例,尤其是在数据流情景中。Flink 提供复杂事件处理(CEP)库,该库允许在事件流中进行模式检测。此外,Flink 的 SQL API 提供了一种关系式的查询表达方式,其中包含大量内置函数和基于规则的优化,可以开箱即用。

2016 年 12 月,国际标准化组织(ISO)发布了新版本的 SQL 标准,其中包括在 SQL 中的行模式识别(Row Pattern Recognition in SQL)(ISO/IEC TR 19075-5:2016)。它允许 Flink 使用 MATCH_RECOGNIZE 子句融合 CEP 和 SQL API,以便在 SQL 中进行复杂事件处理。

MATCH_RECOGNIZE 子句启用以下任务:

  • 使用 PARTITION BY 和 ORDER BY 子句对数据进行逻辑分区和排序。
  • 使用 PATTERN 子句定义要查找的行模式。这些模式使用类似于正则表达式的语法。
  • 在 DEFINE 子句中指定行模式变量的逻辑组合。
  • measures 是指在 MEASURES 子句中定义的表达式,这些表达式可用于 SQL 查询中的其他部分。

下面的示例演示了基本模式识别的语法:

SELECT T.aid, T.bid, T.cid
FROM MyTable
    MATCH_RECOGNIZE (
      PARTITION BY userid
      ORDER BY proctime
      MEASURES
        A.id AS aid,
        B.id AS bid,
        C.id AS cid
      PATTERN (A B C)
      DEFINE
        A AS name = 'a',
        B AS name = 'b',
        C AS name = 'c'
    ) AS T
    

本文将更详细地解释每个关键字,并演示说明更复杂的示例。

Flink 的 MATCH_RECOGNIZE 子句实现是一个完整标准子集。仅支持以下部分中记录的功能。

1、介绍及示例

1)、介绍

模式识别特性使用 Apache Flink 内部的 CEP 库。为了能够使用 MATCH_RECOGNIZE 子句,需要将库作为依赖项添加到 Maven 项目中。

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-cep</artifactId>
  <version>1.17.1</version>
</dependency>

如果你想在 SQL Client 中使用 MATCH_RECOGNIZE 子句,你无需执行任何操作,因为默认情况下包含所有依赖项。

每个 MATCH_RECOGNIZE 查询都包含以下子句:

  • PARTITION BY - 定义表的逻辑分区;类似于 GROUP BY 操作。
  • ORDER BY - 指定传入行的排序方式;这是必须的,因为模式依赖于顺序。
  • MEASURES - 定义子句的输出;类似于 SELECT 子句。
  • ONE ROW PER MATCH - 输出方式,定义每个匹配项应产生多少行。
  • AFTER MATCH SKIP - 指定下一个匹配的开始位置;这也是控制单个事件可以属于多少个不同匹配项的方法。
  • PATTERN - 允许使用类似于 正则表达式 的语法构造搜索的模式。
  • DEFINE - 本部分定义了模式变量必须满足的条件。

截至版本Flink 1.17,MATCH_RECOGNIZE 子句只能应用于追加表。此外,它也总是生成一个追加表

2)、示例

查找ticker2表中的‘a’记录不断降低的时间,查询从何时开始降低、何时最低以及何时开始增长。

---- 1、建表
CREATE TABLE alan_ticker (
   symbol STRING,
   price DOUBLE,
   tax  DOUBLE,
   rowtime  TIMESTAMP(3),
   WATERMARK FOR rowtime AS rowtime - INTERVAL '1' SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 'alan_ticker_topic',
  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',
  'scan.startup.mode' = 'earliest-offset',
  'format' = 'csv'
);


Flink SQL> desc alan_ticker;
+---------+------------------------+------+-----+--------+---------------------------------+
|    name |                   type | null | key | extras |                       watermark |
+---------+------------------------+------+-----+--------+---------------------------------+
|  symbol |                 STRING | TRUE |     |        |                                 |
|   price |                 DOUBLE | TRUE |     |        |                                 |
|     tax |                 DOUBLE | TRUE |     |        |                                 |
| rowtime | TIMESTAMP(3) *ROWTIME* | TRUE |     |        | `rowtime` - INTERVAL '1' SECOND |
+---------+------------------------+------+-----+--------+---------------------------------+


---- 2、查询数据
Flink SQL> select * from alan_ticker;
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                          price |                            tax |                 rowtime |
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           12.0 |                            1.0 | 2023-09-25 13:16:01.000 |
| +I |                           alan |                           17.0 |                            2.0 | 2023-09-25 13:16:02.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           21.0 |                            3.0 | 2023-09-25 13:16:04.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           18.0 |                            1.0 | 2023-09-25 13:16:06.000 |
| +I |                           alan |                           15.0 |                            1.0 | 2023-09-25 13:16:07.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 13:16:08.000 |
| +I |                           alan |                           24.0 |                            2.0 | 2023-09-25 13:16:09.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:10.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:11.000 |



---- 3、模式检测示例
# 此查询将 alan_ticker 表按照 symbol 列进行分区并按照 rowtime 属性进行排序
# PATTERN 子句指定我们对以下模式感兴趣:该模式具有开始事件 START_ROW,然后是一个或多个 PRICE_DOWN 事件,并以 PRICE_UP 事件结束。如果可以找到这样的模式,如 AFTER MATCH SKIP TO LAST 子句所示,则从最后一个 PRICE_UP 事件开始寻找下一个模式匹配。
# DEFINE 子句指定 PRICE_DOWN 和 PRICE_UP 事件需要满足的条件。尽管不存在 START_ROW 模式变量,但它具有一个始终被评估为 TRUE 隐式条件
# 模式变量 PRICE_DOWN 定义为价格小于满足 PRICE_DOWN 条件的最后一行。对于初始情况或没有满足 PRICE_DOWN 条件的最后一行时,该行的价格应小于该模式中前一行(由 START_ROW 引用)的价格。
# 模式变量 PRICE_UP 定义为价格大于满足 PRICE_DOWN 条件的最后一行
# 在查询的 MEASURES 子句部分定义确切的输出行信息。输出行数由 ONE ROW PER MATCH 输出方式定义

Flink SQL> SELECT *
> FROM alan_ticker
>     MATCH_RECOGNIZE (
>         PARTITION BY symbol -- 按照 symbol 列进行分区并按照 rowtime 属性进行排序
>         ORDER BY rowtime
>         MEASURES
>             START_ROW.rowtime AS start_tstamp,
>             LAST(PRICE_DOWN.rowtime) AS bottom_tstamp,
>             LAST(PRICE_UP.rowtime) AS end_tstamp
>         ONE ROW PER MATCH -- 输出行数由 ONE ROW PER MATCH 输出方式定义
>         AFTER MATCH SKIP TO LAST PRICE_UP --如果找到完全匹配后从最后一个PRICE_UP 事件开始寻找下一个模式匹配
>         --指定模式,有开始事件START_ROW,然后是一个或多个PRICE_DOWN 事件,并以 PRICE_UP 事件结束
>         --定义了模式变量PRICE_DOWN、PRICE_UP 必须满足的条件
>        --不存在 START_ROW 模式变量,它具有一个始终被评估为 TRUE 隐式条件。
>        --任意行都可以是 START_ROW
>         PATTERN (START_ROW PRICE_DOWN+ PRICE_UP) 
>         DEFINE
>         -- 模式变量 PRICE_DOWN 定义
>         -- 对于初始情况或没有满足 PRICE_DOWN 条件的最后一行时,该行的价格应小于该模式中前一行(由 START_ROW 引用)的价格。
>         -- 价格小于满足 PRICE_DOWN 条件的最后一行
>         PRICE_DOWN AS (LAST(PRICE_DOWN.price, 1) IS NULL AND PRICE_DOWN.price < START_ROW.price) OR PRICE_DOWN.price < LAST(PRICE_DOWN.price, 1),
>         --模式变量 PRICE_UP 定义
>         --价格大于满足 PRICE_DOWN 条件的最后一行
>         PRICE_UP AS PRICE_UP.price > LAST(PRICE_DOWN.price, 1)
>     ) MR;
+----+--------------------------------+-------------------------+-------------------------+-------------------------+
| op |                         symbol |            start_tstamp |           bottom_tstamp |              end_tstamp |
+----+--------------------------------+-------------------------+-------------------------+-------------------------+
| +I |                           alan | 2023-09-25 13:16:05.000 | 2023-09-25 13:16:08.000 | 2023-09-25 13:16:09.000 |

# 该行结果描述了从 2023-09-25 13:16:05 开始的降低,在 2023-09-25 13:16:08 达到最低,到 2023-09-25 13:16:09 再次上涨

2、分区

可以在分区数据中寻找模式,例如单个股票行情或特定用户的趋势。这可以用 PARTITION BY 子句来表示。该子句类似于对 aggregation 使用 GROUP BY。

强烈建议对传入的数据进行分区,否则 MATCH_RECOGNIZE 子句将被转换为非并行算子,以确保全局排序

3、事件顺序

Apache Flink 可以根据时间(处理时间或者事件时间)进行模式搜索。

如果是事件时间,则在将事件传递到内部模式状态机之前对其进行排序。所以,无论行添加到表的顺序如何,生成的输出都是正确的。而模式是按照每行中所包含的时间指定顺序计算的。

MATCH_RECOGNIZE 子句假定升序的 时间属性 是 ORDER BY 子句的第一个参数。

对于示例 alan_ticker 表,诸如 ORDER BY rowtime ASC, price DESC 的定义是有效的,但 ORDER BY price, rowtime 或者 ORDER BY rowtime DESC, price ASC 是无效的。

4、Define & Measures

DEFINE 和 MEASURES 关键字与简单 SQL 查询中的 WHERE 和 SELECT 子句具有相近的含义。

MEASURES 子句定义匹配模式的输出中要包含哪些内容。它可以投影列并定义表达式进行计算。产生的行数取决于输出方式设置。

DEFINE 子句指定行必须满足的条件才能被分类到相应的模式变量。如果没有为模式变量定义条件,则将对每一行使用计算结果为 true 的默认条件。

有关在这些子句中可使用的表达式的更详细的说明,请查看事件流导航部分。

1)、Aggregations

Aggregations 可以在 DEFINE 和 MEASURES 子句中使用。支持内置函数和用户自定义函数。

对相应匹配项的行子集可以使用 Aggregate functions。请查看事件流导航部分以了解如何计算这些子集。

下面这个示例的任务是找出股票平均价格没有低于某个阈值的最长时间段。它展示了 MATCH_RECOGNIZE 在 aggregation 中的可表达性。可以使用以下查询执行此任务:

2)、示例

下面这个示例的任务是找出股票平均价格没有低于某个阈值的最长时间段。它展示了 MATCH_RECOGNIZE 在 aggregation 中的可表达性。可以使用以下查询执行此任务:

----1、建表
# 使用上述示例的表 alan_ticker

----2、查询表数据
# 使用上述示例的表 alan_ticker 及其数据
Flink SQL> select * from alan_ticker;
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                          price |                            tax |                 rowtime |
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           12.0 |                            1.0 | 2023-09-25 13:16:01.000 |
| +I |                           alan |                           17.0 |                            2.0 | 2023-09-25 13:16:02.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           21.0 |                            3.0 | 2023-09-25 13:16:04.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           18.0 |                            1.0 | 2023-09-25 13:16:06.000 |
| +I |                           alan |                           15.0 |                            1.0 | 2023-09-25 13:16:07.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 13:16:08.000 |
| +I |                           alan |                           24.0 |                            2.0 | 2023-09-25 13:16:09.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:10.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:11.000 |

----3、聚合验证
# 只要事件的平均价格不超过 18,查询就会将事件作为模式变量 A 的一部分进行累积。
# 例如,这种限制发生在 2023-09-25 13:16:05。接下来的时间段在 2023-09-25 13:16:10 再次超过平均价格 18
# 因此,所述查询的结果将是:

Flink SQL> SELECT *
> FROM alan_ticker
>     MATCH_RECOGNIZE (
>         PARTITION BY symbol
>         ORDER BY rowtime
>         MEASURES
>             FIRST(A.rowtime) AS start_tstamp,
>             LAST(A.rowtime) AS end_tstamp,
>             AVG(A.price) AS avgPrice
>         ONE ROW PER MATCH
>         AFTER MATCH SKIP PAST LAST ROW
>         PATTERN (A+ B)
>         DEFINE
>             A AS AVG(A.price) < 18
>     ) MR;
+----+--------------------------------+-------------------------+-------------------------+--------------------------------+
| op |                         symbol |            start_tstamp |              end_tstamp |                       avgPrice |
+----+--------------------------------+-------------------------+-------------------------+--------------------------------+
| +I |                           alan | 2023-09-25 13:16:01.000 | 2023-09-25 13:16:04.000 |                          17.25 |
| +I |                           alan | 2023-09-25 13:16:07.000 | 2023-09-25 13:16:09.000 |             17.666666666666668 |


Aggregation 可以应用于表达式,但前提是它们引用单个模式变量。因此,SUM(A.price * A.tax) 是有效的,而
AVG(A.price * B.tax) 则是无效的。

不支持 DISTINCT aggregation。

5、定义模式

MATCH_RECOGNIZE 子句允许用户在事件流中使用功能强大、表达力强的语法搜索模式,这种语法与广泛使用的正则表达式语法有些相似。

每个模式都是由基本的构建块构造的,称为 模式变量,可以应用算子(量词和其他修饰符)到这些模块中。整个模式必须用括号括起来。

示例模式如下所示:

PATTERN (A B+ C* D)
-- 开始行复合A模式
-- 然后是1或者多行B模式事件
-- 接着是0或者多行C模式事件
-- 以D模式行结束

可以使用以下算子:
1、Concatenation - 像 (A B) 这样的模式意味着 A 和 B 之间的连接是严格的。因此,在它们之间不能存在没有映射到 A 或 B 的行。
2、Quantifiers - 修改可以映射到模式变量的行数。

  • ‘*’ — 0 或者多行
  • ‘+’ — 1 或者多行
  • ? — 0 或者 1 行
  • { n } — 严格 n 行(n > 0)
  • { n, } — n 或者更多行(n ≥ 0)
  • { n, m } — 在 n 到 m(含)行之间(0 ≤ n ≤ m,0 < m)
  • { , m } — 在 0 到 m(含)行之间(m > 0)

不支持可能产生空匹配的模式。此类模式的示例如 PATTERN (A*),PATTERN (A? B*),PATTERN (A{0,} B{0,} C*) 等

1)、贪婪量词和勉强量词

每一个量词可以是 贪婪(默认行为)的或者 勉强 的。贪婪的量词尝试匹配尽可能多的行,而勉强的量词则尝试匹配尽可能少的行。

为了说明区别,可以通过查询查看以下示例,其中贪婪量词应用于 B 变量:

----1、建表
# 使用上述示例的表 alan_ticker

----2、查询表数据
# 使用上述示例的表 alan_ticker 及其数据
Flink SQL> select * from alan_ticker;
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                          price |                            tax |                 rowtime |
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           12.0 |                            1.0 | 2023-09-25 13:16:01.000 |
| +I |                           alan |                           17.0 |                            2.0 | 2023-09-25 13:16:02.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           21.0 |                            3.0 | 2023-09-25 13:16:04.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           18.0 |                            1.0 | 2023-09-25 13:16:06.000 |
| +I |                           alan |                           15.0 |                            1.0 | 2023-09-25 13:16:07.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 13:16:08.000 |
| +I |                           alan |                           24.0 |                            2.0 | 2023-09-25 13:16:09.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:10.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:11.000 |

----3、贪婪量词(B*)示例
Flink SQL> SELECT *
> FROM alan_ticker
>     MATCH_RECOGNIZE(
>         PARTITION BY symbol
>         ORDER BY rowtime
>         MEASURES
>             C.price AS lastPrice,
>             C.rowtime AS rowtime
>         ONE ROW PER MATCH
>         AFTER MATCH SKIP PAST LAST ROW --从最后一个 C 事件开始寻找下一个模式匹配
>         PATTERN (A B* C) -- 贪婪量词应用于 B
>         DEFINE
>             A AS A.price > 12,
>             B AS B.price < 25,
>             C AS C.price > 18
>     );
+----+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                      lastPrice |                 rowtime |
+----+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           25.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           25.0 | 2023-09-25 13:16:10.000 |


----4、勉强量词(B*?)示例
Flink SQL> SELECT *
> FROM alan_ticker
>     MATCH_RECOGNIZE(
>         PARTITION BY symbol
>         ORDER BY rowtime
>         MEASURES
>             C.price AS lastPrice,
>             C.rowtime AS rowtime
>         ONE ROW PER MATCH
>         AFTER MATCH SKIP PAST LAST ROW
>         PATTERN (A B*? C)
>         DEFINE
>             A AS A.price > 12,
>             B AS B.price < 25,
>             C AS C.price > 18
>     );
+----+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                      lastPrice |                 rowtime |
+----+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           19.0 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           25.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           24.0 | 2023-09-25 13:16:09.000 |


  • 匹配模式 A B* C
    在这里插入图片描述
    - 匹配模式 A B*? C
    在这里插入图片描述

模式的最后一个变量不能使用贪婪量词。因此,不允许使用类似 (A B*) 的模式。通过引入条件为 B 的人工状态(例如 C),可以轻松解决此问题。因此,你可以使用类似以下的查询

PATTERN (A B* C)
DEFINE
    A AS condA(),
    B AS condB(),
    C AS NOT condB()
    

截至版本Flink 1.17不支持可选的勉强量词(A?? 或者 A{0,1}?)

2)、时间约束

特别是对于流的使用场景,通常需要在给定的时间内完成模式。这要求限制住 Flink 在内部必须保持的状态总体大小(即已经过期的状态就不需要再维护了),即使在贪婪的量词的情况下也是如此。

因此,Flink SQL 支持附加的(非标准 SQL)WITHIN 子句来定义模式的时间约束。子句可以在 PATTERN 子句之后定义,并以毫秒为间隔进行解析。

如果潜在匹配的第一个和最后一个事件之间的时间长于给定值,则不会将这种匹配追加到结果表中。

通常鼓励使用 WITHIN 子句,因为它有助于 Flink 进行有效的内存管理。一旦达到阈值,即可修剪基础状态。然而,WITHIN 子句不是 SQL 标准的一部分。时间约束处理的方法已被提议将来可能会改变

----1、建表
CREATE TABLE alan_ticker2 (
   symbol STRING,
   price DOUBLE,
   tax  DOUBLE,
   rowtime  TIMESTAMP(3),
   WATERMARK FOR rowtime AS rowtime - INTERVAL '1' SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 'alan_ticker2_topic',
  'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',
  'scan.startup.mode' = 'earliest-offset',
  'format' = 'csv'
);
[INFO] Execute statement succeed.

Flink SQL> desc ticker7;
+---------+------------------------+------+-----+--------+---------------------------------+
|    name |                   type | null | key | extras |                       watermark |
+---------+------------------------+------+-----+--------+---------------------------------+
|  symbol |                 STRING | TRUE |     |        |                                 |
| rowtime | TIMESTAMP(3) *ROWTIME* | TRUE |     |        | `rowtime` - INTERVAL '1' SECOND |
|   price |                    INT | TRUE |     |        |                                 |
|     tax |                    INT | TRUE |     |        |                                 |
+---------+------------------------+------+-----+--------+---------------------------------+

----2、查询数据
Flink SQL> select * from alan_ticker2;
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                          price |                            tax |                 rowtime |
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           20.0 |                            1.0 | 2023-09-25 13:00:00.000 |
| +I |                           alan |                           17.0 |                            2.0 | 2023-09-25 13:20:00.000 |
| +I |                           alan |                           18.0 |                            1.0 | 2023-09-25 13:40:00.000 |
| +I |                           alan |                           11.0 |                            3.0 | 2023-09-25 14:00:00.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 14:20:00.000 |
| +I |                           alan |                            9.0 |                            1.0 | 2023-09-25 14:40:00.000 |
| +I |                           alan |                           15.0 |                            1.0 | 2023-09-25 15:00:00.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 15:20:00.000 |
| +I |                           alan |                           24.0 |                            2.0 | 2023-09-25 15:40:00.000 |
| +I |                           alan |                            1.0 |                            2.0 | 2023-09-25 16:00:00.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 16:20:00.000 |

----3、验证时间约束
Flink SQL> SELECT *
> FROM alan_ticker2
>     MATCH_RECOGNIZE(
>         PARTITION BY symbol
>         ORDER BY rowtime
>         MEASURES
>             C.rowtime AS dropTime,
>             A.price - C.price AS dropDiff
>         ONE ROW PER MATCH
>         AFTER MATCH SKIP PAST LAST ROW
>         PATTERN (A B* C) WITHIN INTERVAL '1' HOUR
>         DEFINE
>             B AS B.price > A.price - 10,
>             C AS C.price < A.price - 10
>     );
+----+--------------------------------+-------------------------+--------------------------------+
| op |                         symbol |                dropTime |                       dropDiff |
+----+--------------------------------+-------------------------+--------------------------------+
| +I |                           alan | 2023-09-25 16:00:00.000 |                           13.0 |


# 结果行代表价格从 15(在2023-09-25 15:00:00)下降到 1(在2023-09-25 16:00:00)。dropDiff 列包含价格差异。

# 即使价格也下降了较高的值,例如,下降了 11(在 2023-09-25 13:00:00 和 2023-09-25 14:40:00 之间),这两个事件之间的时间差大于 1 小时。因此,它们不会产生匹配。

#### 为什么本人运行出来的结果是13而不是14?官方示例也是14#########

在这里插入图片描述

6、输出方式

输出方式 描述每个找到的匹配项应该输出多少行。SQL 标准描述了两种方式:

  • ALL ROWS PER MATCH
  • ONE ROW PER MATCH
    截至版本Flink 1.17 ,唯一支持的输出方式是 ONE ROW PER MATCH,它将始终为每个找到的匹配项生成一个输出摘要行。

输出行的 schema 将是按特定顺序连接 [partitioning columns] + [measures columns]。

以下示例显示了所定义的查询的输出:

----1、建表
# 使用上文中的表结构
----2、查询数据
# 使用上文中的表数据
Flink SQL> select * from alan_ticker;
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                          price |                            tax |                 rowtime |
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           12.0 |                            1.0 | 2023-09-25 13:16:01.000 |
| +I |                           alan |                           17.0 |                            2.0 | 2023-09-25 13:16:02.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           21.0 |                            3.0 | 2023-09-25 13:16:04.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           18.0 |                            1.0 | 2023-09-25 13:16:06.000 |
| +I |                           alan |                           15.0 |                            1.0 | 2023-09-25 13:16:07.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 13:16:08.000 |
| +I |                           alan |                           24.0 |                            2.0 | 2023-09-25 13:16:09.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:10.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:11.000 |
| +I |                           alan |                           20.0 |                            1.0 | 2023-09-25 13:16:12.000 |

----3、验证输出方式
# 该模式识别由 symbol 列分区。即使在 MEASURES 子句中未明确提及,分区列仍会添加到结果的开头
Flink SQL> SELECT *
> FROM alan_ticker
>     MATCH_RECOGNIZE(
>         PARTITION BY symbol
>         ORDER BY rowtime
>         MEASURES
>             FIRST(A.price) AS startPrice,
>             LAST(A.price) AS topPrice,
>             B.price AS lastPrice
>         ONE ROW PER MATCH
>         PATTERN (A+ B)
>         DEFINE
>             A AS LAST(A.price, 1) IS NULL OR A.price > LAST(A.price, 1),
>             B AS B.price < LAST(A.price)
>     );
+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
| op |                         symbol |                     startPrice |                       topPrice |                      lastPrice |
+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
| +I |                           alan |                           12.0 |                           25.0 |                           18.0 |
| +I |                           alan |                           17.0 |                           25.0 |                           18.0 |
| +I |                           alan |                           19.0 |                           25.0 |                           18.0 |
| +I |                           alan |                           21.0 |                           25.0 |                           18.0 |
| +I |                           alan |                           25.0 |                           25.0 |                           18.0 |
| +I |                           alan |                           18.0 |                           18.0 |                           15.0 |
| +I |                           alan |                           15.0 |                           15.0 |                           14.0 |
| +I |                           alan |                           14.0 |                           25.0 |                           19.0 |
| +I |                           alan |                           24.0 |                           25.0 |                           19.0 |
| +I |                           alan |                           25.0 |                           25.0 |                           19.0 |


7、模式导航

DEFINE 和 MEASURES 子句允许在(可能)匹配模式的行列表中进行导航。

本部分介绍 用于声明条件或产生输出结果的导航。

1)、引用模式变量

引用模式变量 允许引用一组映射到 DEFINE 或 MEASURES 子句中特定模式变量的行。

例如,如果我们尝试将当前行与 A 进行匹配,则表达式 A.price 描述了目前为止已映射到 A 的一组行加上当前行。如果 DEFINE/MEASURES 子句中的表达式需要一行(例如 a.price 或 a.price > 10),它将选择属于相应集合的最后一个值。

如果没有指定模式变量(例如 SUM(price)),则表达式引用默认模式变量 *,该变量引用模式中的所有变量。换句话说,它创建了一个列表,其中列出了迄今为止映射到任何变量的所有行以及当前行。

示例 #
对于更全面的示例,可以查看以下模式和相应的条件:

PATTERN (A B+)
DEFINE
  A AS A.price >= 10,
  B AS B.price > A.price AND SUM(price) < 100 AND SUM(B.price) < 80

下表描述了如何为每个传入事件计算这些条件。

该表由以下列组成:

  • ‘#’ - 行标识符,用于唯一标识列表中的传入行 [A.price]/[B.price]/[price]。
  • price - 传入行的价格。
  • [A.price]/[B.price]/[price] - 描述 DEFINE 子句中用于计算条件的行列表。
  • Classifier - 当前行的分类器,指示该行映射到的模式变量。
  • A.price/B.price/SUM(price)/SUM(B.price) - 描述了这些表达式求值后的结果。
    在这里插入图片描述

从表中可以看出,第一行映射到模式变量 A,随后的行映射到模式变量 B。但是,最后一行不满足 B 条件,因为所有映射行 SUM(price) 的总和与 B 中所有行的总和都超过了指定的阈值。

2)、Logical Offsets

Logical offsets 在映射到指定模式变量的事件启用导航。这可以用两个相应的函数表示:
在这里插入图片描述
对于更全面的示例,可以参考以下模式和相应的条件:

PATTERN (A B+)
DEFINE
  A AS A.price >= 10,
  B AS (LAST(B.price, 1) IS NULL OR B.price > LAST(B.price, 1)) AND
       (LAST(B.price, 2) IS NULL OR B.price > 2 * LAST(B.price, 2))

下表描述了如何为每个传入事件计算这些条件。

该表包括以下列:

  • price - 传入行的价格。
  • Classifier - 当前行的分类器,指示该行映射到的模式变量。
  • LAST(B.price, 1)/LAST(B.price, 2) - 描述对这些表达式求值后的结果。

在这里插入图片描述
将默认模式变量与 logical offsets 一起使用也可能很有意义。

在这种情况下,offset 会包含到目前为止映射的所有行:

PATTERN (A B? C)
DEFINE
  B AS B.price < 20,
  C AS LAST(price, 1) < C.price

在这里插入图片描述
如果第二行没有映射到 B 变量,则会得到以下结果:
在这里插入图片描述
也可以在 FIRST/LAST 函数的第一个参数中使用多个模式变量引用。这样,可以编写访问多个列的表达式。但是,它们都必须使用相同的模式变量。换句话说,必须在一行中计算 LAST/FIRST 函数的值。

因此,可以使用 LAST(A.price * A.tax),但不允许使用类似 LAST(A.price * B.tax) 的表达式。

8、匹配后的策略

AFTER MATCH SKIP 子句指定在找到完全匹配后从何处开始新的匹配过程。

有四种不同的策略:

  • SKIP PAST LAST ROW - 在当前匹配的最后一行之后的下一行继续模式匹配。
  • SKIP TO NEXT ROW - 继续从匹配项开始行后的下一行开始搜索新匹配项。
  • SKIP TO LAST variable - 恢复映射到指定模式变量的最后一行的模式匹配。
  • SKIP TO FIRST variable - 在映射到指定模式变量的第一行继续模式匹配。

这也是一种指定单个事件可以属于多少个匹配项的方法。例如,使用 SKIP PAST LAST ROW 策略,每个事件最多只能属于一个匹配项。

为了更好地理解这些策略之间的差异,参考下面的例子。

1)、环境/数据准备

----1、建表
Flink SQL> CREATE TABLE alan_ticker_test (
>    symbol STRING,
>    price DOUBLE,
>    tax  DOUBLE,
>    rowtime  TIMESTAMP(3),
>    WATERMARK FOR rowtime AS rowtime - INTERVAL '1' SECOND
> ) WITH (
>   'connector' = 'kafka',
>   'topic' = 'alan_ticker_test',
>   'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',
>   'scan.startup.mode' = 'earliest-offset',
>   'format' = 'csv'
> );

----2、查询数据
Flink SQL> select * from alan_ticker_test;
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                          price |                            tax |                 rowtime |
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           12.0 |                            1.0 | 2023-09-25 13:16:01.000 |
| +I |                           alan |                           17.0 |                            2.0 | 2023-09-25 13:16:02.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           21.0 |                            3.0 | 2023-09-25 13:16:04.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           18.0 |                            1.0 | 2023-09-25 13:16:06.000 |
| +I |                           alan |                           15.0 |                            1.0 | 2023-09-25 13:16:07.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 13:16:08.000 |
| +I |                           alan |                           24.0 |                            2.0 | 2023-09-25 13:16:09.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:10.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:11.000 |

2)、AFTER MATCH SKIP PAST LAST ROW示例

使用上述的数据,查询结果如下

Flink SQL> SELECT *
> FROM alan_ticker_test
>     MATCH_RECOGNIZE(
>         PARTITION BY symbol
>         ORDER BY rowtime
>         MEASURES
>             SUM(A.price) AS sumPrice,
>             FIRST(rowtime) AS startTime,
>             LAST(rowtime) AS endTime
>         ONE ROW PER MATCH
>         AFTER MATCH SKIP PAST LAST ROW --在当前匹配的最后一行之后的下一行继续模式匹配
>         PATTERN (A+ C)
>         DEFINE
>             A AS SUM(A.price) < 30
>     );
+----+--------------------------------+--------------------------------+-------------------------+-------------------------+
| op |                         symbol |                       sumPrice |               startTime |                 endTime |
+----+--------------------------------+--------------------------------+-------------------------+-------------------------+
| +I |                           alan |                           29.0 | 2023-09-25 13:16:01.000 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           21.0 | 2023-09-25 13:16:04.000 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           18.0 | 2023-09-25 13:16:06.000 | 2023-09-25 13:16:07.000 |
| +I |                           alan |                           14.0 | 2023-09-25 13:16:08.000 | 2023-09-25 13:16:09.000 |
| +I |                           alan |                           25.0 | 2023-09-25 13:16:10.000 | 2023-09-25 13:16:11.000 |

在这里插入图片描述

3)、AFTER MATCH SKIP TO NEXT ROW示例

Flink SQL> select * from alan_ticker_test;
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| op |                         symbol |                          price |                            tax |                 rowtime |
+----+--------------------------------+--------------------------------+--------------------------------+-------------------------+
| +I |                           alan |                           12.0 |                            1.0 | 2023-09-25 13:16:01.000 |
| +I |                           alan |                           17.0 |                            2.0 | 2023-09-25 13:16:02.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:03.000 |
| +I |                           alan |                           21.0 |                            3.0 | 2023-09-25 13:16:04.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:05.000 |
| +I |                           alan |                           18.0 |                            1.0 | 2023-09-25 13:16:06.000 |
| +I |                           alan |                           15.0 |                            1.0 | 2023-09-25 13:16:07.000 |
| +I |                           alan |                           14.0 |                            2.0 | 2023-09-25 13:16:08.000 |
| +I |                           alan |                           24.0 |                            2.0 | 2023-09-25 13:16:09.000 |
| +I |                           alan |                           25.0 |                            2.0 | 2023-09-25 13:16:10.000 |
| +I |                           alan |                           19.0 |                            1.0 | 2023-09-25 13:16:11.000 |
| +I |                           alan |                           29.0 |                            1.0 | 2023-09-25 13:16:12.000 |

在这里插入图片描述

4)、AFTER MATCH SKIP TO LAST variable 示例

本示例使用以下sql运行将产生如下异常

SELECT *
FROM alan_ticker_test
    MATCH_RECOGNIZE(
        PARTITION BY symbol
        ORDER BY rowtime
        MEASURES
            SUM(A.price) AS sumPrice,
            FIRST(rowtime) AS startTime,
            LAST(rowtime) AS endTime
        ONE ROW PER MATCH
        AFTER MATCH SKIP TO LAST A
        PATTERN (A+ C)
        DEFINE
            A AS SUM(A.price) < 30
    );

java.lang.RuntimeException:> org.apache.flink.util.FlinkRuntimeException: Could not skip to first element of a match.

本文开头的示例中有关于该方法的使用,如下:

Flink SQL> SELECT *
> FROM alan_ticker
>     MATCH_RECOGNIZE (
>         PARTITION BY symbol -- 按照 symbol 列进行分区并按照 rowtime 属性进行排序
>         ORDER BY rowtime
>         MEASURES
>             START_ROW.rowtime AS start_tstamp,
>             LAST(PRICE_DOWN.rowtime) AS bottom_tstamp,
>             LAST(PRICE_UP.rowtime) AS end_tstamp
>         ONE ROW PER MATCH -- 输出行数由 ONE ROW PER MATCH 输出方式定义
>         AFTER MATCH SKIP TO LAST PRICE_UP --如果找到完全匹配后从最后一个PRICE_UP 事件开始寻找下一个模式匹配
>         --指定模式,有开始事件START_ROW,然后是一个或多个PRICE_DOWN 事件,并以 PRICE_UP 事件结束
>         --定义了模式变量PRICE_DOWN、PRICE_UP 必须满足的条件
>        --不存在 START_ROW 模式变量,它具有一个始终被评估为 TRUE 隐式条件。
>        --任意行都可以是 START_ROW
>         PATTERN (START_ROW PRICE_DOWN+ PRICE_UP) 
>         DEFINE
>         -- 模式变量 PRICE_DOWN 定义
>         -- 对于初始情况或没有满足 PRICE_DOWN 条件的最后一行时,该行的价格应小于该模式中前一行(由 START_ROW 引用)的价格。
>         -- 价格小于满足 PRICE_DOWN 条件的最后一行
>         PRICE_DOWN AS (LAST(PRICE_DOWN.price, 1) IS NULL AND PRICE_DOWN.price < START_ROW.price) OR PRICE_DOWN.price < LAST(PRICE_DOWN.price, 1),
>         --模式变量 PRICE_UP 定义
>         --价格大于满足 PRICE_DOWN 条件的最后一行
>         PRICE_UP AS PRICE_UP.price > LAST(PRICE_DOWN.price, 1)
>     ) MR;
+----+--------------------------------+-------------------------+-------------------------+-------------------------+
| op |                         symbol |            start_tstamp |           bottom_tstamp |              end_tstamp |
+----+--------------------------------+-------------------------+-------------------------+-------------------------+
| +I |                           alan | 2023-09-25 13:16:05.000 | 2023-09-25 13:16:08.000 | 2023-09-25 13:16:09.000 |

# 该行结果描述了从 2023-09-25 13:16:05 开始的降低,在 2023-09-25 13:16:08 达到最低,到 2023-09-25 13:16:09 再次上涨

5)、AFTER MATCH SKIP TO FIRST variable 示例

SELECT *
FROM alan_ticker_test
    MATCH_RECOGNIZE(
        PARTITION BY symbol
        ORDER BY rowtime
        MEASURES
            SUM(A.price) AS sumPrice,
            FIRST(rowtime) AS startTime,
            LAST(rowtime) AS endTime
        ONE ROW PER MATCH
        AFTER MATCH SKIP TO FIRST  A --在映射到指定模式变量的第一行继续模式匹配
        PATTERN (A+ C)
        DEFINE
            A AS SUM(A.price) < 30
    );

java.lang.RuntimeException: org.apache.flink.util.FlinkRuntimeException: Could not skip to first element of a match.

这种组合将产生一个运行时异常,因为人们总是试图在上一个开始的地方开始一个新的匹配。这将产生一个无限循环,因此是禁止的。

在 SKIP TO FIRST/LAST variable 策略的场景下,可能没有映射到该变量的行(例如,对于模式 A*)。在这种情况下,将抛出一个运行时异常,因为标准要求一个有效的行来继续匹配

9、时间属性

为了在 MATCH_RECOGNIZE 之上应用一些后续查询,可能需要使用时间属性。有两个函数可供选择:
在这里插入图片描述

10、控制内存消耗

在编写 MATCH_RECOGNIZE 查询时,内存消耗是一个重要的考虑因素,因为潜在匹配的空间是以宽度优先的方式构建的。鉴于此,我们必须确保模式能够完成。最好使用映射到匹配项的合理数量的行,因为它们必须内存相适。

例如,该模式不能有没有接受每一行上限的量词。这种模式可以是这样的:

PATTERN (A B+ C)
DEFINE
  A as A.price > 10,
  C as C.price > 20

查询将每个传入行映射到 B 变量,因此永远不会完成。可以纠正此查询,例如,通过否定 C 的条件:

PATTERN (A B+ C)
DEFINE
  A as A.price > 10,
  B as B.price <= 20,
  C as C.price > 20

或者使用 reluctant quantifier:

PATTERN (A B+? C)
DEFINE
  A as A.price > 10,
  C as C.price > 20
  

MATCH_RECOGNIZE 子句未使用配置的 state retention time。为此,可能需要使用 WITHIN 子句。

11、已知的局限

Flink 对 MATCH_RECOGNIZE 子句实现是一项长期持续的工作,截至flink版本1.17尚不支持 SQL 标准的某些功能。

不支持的功能包括:

1、模式表达式:

  • Pattern groups - 这意味着量词不能应用于模式的子序列。因此,(A (B C)+) 不是有效的模式。
  • Alterations - 像 PATTERN((A B | C D) E)这样的模式,这意味着在寻找 E 行之前必须先找到子序列 A B 或者 C D。
  • PERMUTE operator - 这等同于它应用于所示的所有变量的排列 PATTERN (PERMUTE (A, B, C)) = PATTERN (A B C | A C B | B A C | B C A | C A B | C B A)。
  • Anchors - ^, $,表示分区的开始/结束,在流上下文中没有意义,将不被支持。
  • Exclusion - PATTERN ({- A -} B) 表示将查找 A,但是不会参与输出。这只适用于 ALL ROWS PER MATCH 方式。
  • Reluctant optional quantifier - PATTERN A?? 只支持贪婪的可选量词。

2、ALL ROWS PER MATCH 输出方式 - 为参与创建匹配项的每一行产生一个输出行。这也意味着:

  • MEASURES 子句唯一支持的语义是 FINAL
  • CLASSIFIER 函数,尚不支持返回行映射到的模式变量。

3、SUBSET - 它允许创建模式变量的逻辑组,并在 DEFINE 和 MEASURES 子句中使用这些组。

4、Physical offsets - PREV/NEXT,它为所有可见事件建立索引,而不是仅将那些映射到模式变量的事件编入索引(如 logical offsets 的情况)。

5、提取时间属性 - 目前无法为后续基于时间的操作提取时间属性。

6、MATCH_RECOGNIZE 仅 SQL 支持。Table API 中没有等效项。

7、Aggregations:
不支持 distinct aggregations。

以上,介绍了Flink 的模式检测,以及每个可运行的示例、运行结果的图示分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1045607.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【java、maven】报错: 类文件具有错误的版本 61.0, 应为 55.0 请删除该文件或确保该文件位于正确的类路径子目录中。

问题描述&#xff1a;导入依赖后&#xff0c;运行时发生 解决方法&#xff1a; 1.调高SDK版本 调高前&#xff1a; 调高后&#xff1a;

JavaSE11——面向对象_类和对象

一 面向对象 早期的程序设计经历了“面向问题”、“面向过程”的阶段&#xff0c;随着计算机技术的发展&#xff0c;以及所要解决问题的复杂性的提高&#xff0c;以往的程序设计方法已经不能适应这种发展的需求。于是&#xff0c;从 20 世纪 70 年代开始&#xff0c;相继出现了…

性能测试工具 — JMeter

1、jmeter介绍 Apache JMeter 应用程序是开源软件&#xff0c;是一个 100% 纯 Java 应用程序。用于测试Web应用程序、API和其他网络协议的性能。它具有以下特点&#xff1a; 1. 开源免费&#xff1a;JMeter是Apache软件基金会下的一个开源项目&#xff0c;它被称为Apache JMe…

2011年408计组真题步骤解析

12&#xff0e;下列选项中&#xff0c;描述浮点数操作速度指标的是D 。 A&#xff0e;MIPS B&#xff0e;CPI C&#xff0e;IPC D&#xff0e;MFLOPS 解析&#xff1a;浮点数&#xff1f;float&#xff1f;选有F的D 13&#xff0e;float 型数据通常用 IEEE 754 单精度浮点数格…

企业数据加密软件都有哪些?对公司能加密的软件有哪些

在当今的数字化时代&#xff0c;企业的信息安全已经成为了一个重要的议题。企业数据加密软件是一种能够保护企业敏感信息的工具&#xff0c;它通过将数据转化为无法直接理解的代码&#xff0c;从而防止未经授权的访问和泄露。本文将从企业数据加密软件的定义、种类以及一些具体…

Web自动化测试 —— capability参数配置

一、capability概述 capability是webdriver支持的标准命令之外的扩展命令&#xff08;配置信息&#xff09;配置web驱动属性&#xff0c;如浏览器名称、浏览器平台。结合selenium gird完成分布式、兼容性测试官网地址&#xff1a; https://www.selenium.dev/zh-cn/documentati…

ssm+vue的在线测试管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的在线测试管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…

考完PMP,还能继续学什么?

大家好&#xff0c;我是老原。 最近有不少粉丝朋友来咨询我&#xff0c;项目经理有什么证书可以考&#xff1f;考过PMP了&#xff0c;还能学点啥来提升一下自己&#xff1f; 在我看来&#xff0c;项目管理可考的证书有很多&#xff0c;但很多项目经理也确确实实存在一些思维盲…

[学习笔记]ARXML - Data Format

参考AUTOSAR文档&#xff1a; https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_TPS_ARXMLSerializationRules.pdfhttps://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_TPS_ARXMLSerializationRules.pdf 编码 arxml只允许使用UTF-8编码&#xff…

先来聊聊MySQL的binlog文件解析

先来聊聊MySQL的binlog文件解析 简介MySQL binlog的三种工作模式binlog相关参数mysqlbinlog解析工具 看腻了文章就来听听视频讲解吧&#xff1a;https://www.bilibili.com/video/BV1F94y1s7xe/ 简介 MySQL的binlog日志是用来记录MySQL对数据库有变更操作的记录&#xff0c;包…

TCP为什么是三次握手

TCP&#xff1a;Transmission Controll Protocol&#xff1a;传输控制协议&#xff1b;面向连接、可靠的、基于字节流的传输层协议 ​ 面向连接&#xff1a;客户端和服务端进行连接的协议 ​ 可靠性&#xff1a;保证信息能够从发送端到达接收端&#xff1b;这是…

四川玖璨电子商务有限公司抖音电商界的领跑者

在当今的电商市场中&#xff0c;四川玖璨电子商务有限公司以其卓越的表现和领先的地位&#xff0c;被广大消费者和业内人士所认可。作为抖音电商领跑者&#xff0c;该公司以其精湛的产品和服务&#xff0c;创新的营销策略&#xff0c;及客户至上的理念&#xff0c;成为这个充满…

Spring学习笔记12 面向切面编程AOP

Spring学习笔记11 GoF代理模式_biubiubiu0706的博客-CSDN博客 AOP(Aspect Oriented Programming):面向切面编程,面向方面编程. AOP是对OOP的补充延申.底层使用动态代理实现. Spring的AOP使用的动态代理是:JDK动态代理_CGLIB动态代理技术.Spring在这两种动态代理中灵活切换.如…

Lua多脚本执行

--全局变量 a 1 b "123"for i 1,2 doc "Holens" endprint(c) print("*************************************1")--本地变量&#xff08;局部变量&#xff09; for i 1,2 dolocal d "Holens2"print(d) end print(d)function F1( ..…

没有 RunInstallerAttribute.Yes 的公共安装程序

安装window服务时报“没有 RunInstallerAttribute.Yes 的公共安装程序”的问题

Pytorch单机多卡分布式训练

Pytorch单机多卡分布式训练 数据并行&#xff1a; DP和DDP 这两个都是pytorch下实现多GPU训练的库&#xff0c;DP是pytorch以前实现的库&#xff0c;现在官方更推荐使用DDP&#xff0c;即使是单机训练也比DP快。 DataParallel&#xff08;DP&#xff09; 只支持单进程多线程…

Aqara秋季品鉴会众新品亮相 空间智能全面进化

9月26日&#xff0c;全球IoT独角兽Aqara以“空间智能&#xff0c;全面进化”为主题在北京三里屯CHAO酒店举办了秋季品鉴会。会上正式发布了方舟智慧中枢M3、卡农智能墙壁开关Z1 Pro、银河系列高端灯具V1以及具备全新功能升级的场景传感器FP2&#xff0c;方舟技术升级至2.0版本。…

浅谈Deep Learning 与 Machine Learning 与Artificial Intelligence

文章目录 三者的联系与区别 三者的联系与区别 “Deep Learning is a kind of Machine Learning, and Machine Learning is a kind of Artificial Intelligence.” 人工智能&#xff08;AI&#xff09;&#xff0c;机器学习&#xff08;Machine Learning&#xff0c;简称ML&am…

玩转 CODING 自动化助手,助力高效研发!

点击链接了解详情 在日常工作中&#xff0c;您是否会遇到下面的情况&#xff1a; 作为研发人员&#xff0c;从需求拆分出来的开发子任务完成时&#xff0c;还要手动修改需求为完成状态&#xff0c;不仅耗时还容易遗漏&#xff1b; 作为产品经理&#xff0c;每天都要关注需求/任…

游戏开发过程中需要注意哪些问题呢?

游戏开发是一个复杂的过程&#xff0c;需要注意多个方面的问题。以下是一些需要特别关注的关键问题&#xff1a; 游戏设计&#xff1a; 确定游戏的核心玩法和目标受众。 制定详细的游戏设计文档&#xff0c;包括角色、关卡设计、游戏机制和故事情节。 技术选择&#xff1a;…