微服务保护-流量控制

news2025/4/19 11:50:08

流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式

簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制

  • 降级:降级熔断

  • 热点:热点参数限流,是限流的一种

  • 授权:请求的权限控制

快速入门

示例

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

 表单中可以填写限流规则,如下:

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。

练习

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

1)首先在sentinel控制台添加限流规则

2)利用jmeter测试

打开jmeter,导入课前资料提供的测试样例:

 选择:

20个用户,2秒内运行完,QPS是10,超过了5.

选中流控入门,QPS<5右键运行:

 

注意,不要点击菜单中的执行按钮来运行。

结果:

 

可以看到,成功的请求每次只有5个

流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式

  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

快速入门测试的就是直接模式。  

关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {
    return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {
    return "更新订单成功";
}

 重启服务,查看sentinel控制台的簇点链路:

3)配置流控规则

对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

在表单中填写流控规则:

 

4)在Jmeter测试

选择《流控模式-关联》

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:  

请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:

确实被限流了。  

5)总结

满足下面条件可以使用关联模式:
◆两个有竞争关系的资源
◆一个优先级较高,一个优先级较低

链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1)添加查询商品方法

在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){
    System.err.println("查询商品");
}

 

2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.out.println("查询订单");
    return "查询订单成功";
}

3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.err.println("新增订单");
    return "新增订单成功";
}

4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解:

@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:

 只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

 

运行的结果:

完全不受影响。

另一个是访问/order/query:

运行结果:

 每次只有2个通过。

总结

流控模式有哪些?

•直接:对当前资源限流

•关联:高优先级资源触发阈值,对低优先级资源限流。

•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

流控效果

在流控的高级选项中,还有一个流控效果选项:

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

 

warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

 

2)Jmeter测试

选择《流控效果,warm up》:

 QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

 

随着时间推移,成功比例越来越高:

 

到Sentinel控制台查看实时监控:

 一段时间后:

排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms

  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

 

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

 平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

 

1)添加流控规则

2)Jmeter测试

选择《流控效果,队列》:

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

 

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

 

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

 

总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

全局参数限流

例如,一个根据id查询商品的接口:

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:

 当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:

 

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

 

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

•如果参数值是100,则每1秒允许的QPS为10

•如果参数值是101,则每1秒允许的QPS为15

案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

 点击新增,填写表单:

3)Jmeter测试

选择《热点参数限流 QPS1》:

 

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2

运行结果:  

例外项,QPS阈值为4  运行结果:

例外项,QPS阈值为10

 运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1021527.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

拜占庭将军问题与分布式一致性算法(Raft、Paxos)理解

背景 在常见的分布式系统中&#xff0c;总会发生诸如机器宕机或网络异常&#xff08;包括网络消息的延迟、丢失、重复、乱序&#xff0c;还有网络分区&#xff09;等情况。Paxos算法需要解决的问题就是如何在一个可能发生上述异常的分布式系统中&#xff0c;快速且正确地在集群…

GitLab使用的最简便方式

GitLab介绍 GitLab是一个基于Git版本控制系统的开源平台&#xff0c;用于代码托管&#xff0c;持续集成&#xff0c;以及协作开发。它提供了一套完整的工具&#xff0c;以帮助开发团队协同工作、管理和部署代码。 往往在企业内部使用gitlab管理代码&#xff0c;记录一下将本地代…

win11将visual studio 2022的调试控制台改为windows terminal

一、前言 默认的调试控制台太丑了&#xff0c;字体也没有好看的&#xff0c;还是更喜欢windows terminal 二、修改 2.1 修改之前 2.2 修改步骤 打开windows terminal点这个向下的标志 选择settings按照下图1, 2, 3步骤依次操作即可 2.3 修改之后 总结 漂亮很多了

在Kubernetes上安装和配置Istio:逐步指南,展示如何在Kubernetes集群中安装和配置Istio服务网格

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

六、串口通信

六、串口通信 串口接口介绍使用串口向电脑发送数据电脑发送数据控制LED灯 串口接口介绍 SBUF是串口数据缓存器&#xff0c;物理上是两个独立的寄存器&#xff0c;但占用相同的地址。写操作时&#xff0c;写入的是发送寄存器&#xff1b;读操作时&#xff0c;读出的是接收寄存器…

【数据库系统概论】数据模型

数据模型是什么两类数据模型两步抽象概念模型数据模型 常用的数据模型感谢 &#x1f496; 数据模型是什么 模型是对现实世界中某个对象特征的模拟和抽象。比如飞机模型就体现了飞机的特性&#xff0c;它模拟飞机的起飞、飞行和降落&#xff0c;它抽象了飞机的基本特征——机头…

C++之vector::insert与vector::insert用法区别总结(二百二十二)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

Loguru:功能强大、简单易用的Python日志库

文章目录 Loguru:Python的日志库安装 Loguru基本用法配置 Loguruadd() 语句remove() 语句设置日志文件保留日志的等级设置控制台日志显示等级Loguru:Python的日志库 Loguru 是一个功能强大、简单易用的日志库,可以让 Python 的日志记录变得更加轻松。它提供了丰富的功能和配…

Kotlin | 在for、forEach循环中正确的使用break、continue

文章目录 for循环中使用break、continueLabel标签forEach中如何退出循环资料 Kotlin 有三种结构化跳转表达式&#xff1a; return&#xff1a;默认从最直接包围它的函数或者匿名函数返回。break&#xff1a;终止最直接包围它的循环。continue&#xff1a;继续下一次最直接包围…

【软考复习系列】计算机网络易错知识点记录

参考文章&#xff1a;图解路由器&#xff1a;这玩意儿能连接全世界的网络&#xff1f; - 知乎 (zhihu.com) 宏内核和微内核 宏内核应该叫单内核或者单核。在这种单核的设计中&#xff0c;内核是一个大的整体&#xff0c;所有内核服务都运行在一个地址空间中&#xff0c;函数之…

软件设计模式系列之九——桥接模式

1 模式的定义 桥接模式是一种结构型设计模式&#xff0c;它用于将抽象部分与其实现部分分离&#xff0c;以便它们可以独立地变化。这种模式涉及一个接口&#xff0c;它充当一个桥&#xff0c;使得具体类可以在不影响客户端代码的情况下改变。桥接模式将继承关系转化为组合关系…

Matlab图像处理-强度分层法

强度分层法 强度分层技术是最简单的伪彩色图像处理方法之一。 如果将一幅图像被描述为空间坐标(x,y) 的强度函数f(x,y) &#xff0c;则分层的方法可以看作是将一些平面平行于图像坐标平面(x,y) &#xff0c;然后将每个平面在相交区域切割图像函数。下图展示了使用平面将图像函…

vue+axios+el-progress(elementUI组件)实现下载进度条实时监听(小白简洁版)

一、实现效果 二、实现方式 方案&#xff1a;使用axios方法onDownloadProgress方法监听下载进度 使用此方式的前提&#xff01;&#xff01;&#xff01;请让后端在响应头中加上content-length&#xff0c;存放下载文件的总大小&#xff0c;如下图&#xff1a; 三、代码 1、进…

【Git】03-GitHub

文章目录 1. GitHub核心功能2. GitHub搜索项目3. GitHub搭建个人博客4. 团队项目创建5. git工作流选择5.1 需要考虑的因素5.2 主干开发5.2 Git Flow5.3 GitHub Flow5.4 GitLab Flow(带生产分支)5.4 GitLab Flow(带环境分支)5.4 GitLab Flow(带发布分支) 6. 分支集成策略7. 启用…

redis 集群(cluster)

1. 前言 我们知道&#xff0c;在Web服务器中&#xff0c;高可用是指服务器可以正常访问的时间&#xff0c;衡量的标准是在多长时间内可以提供正常服务&#xff08;99.9%、99.99%、99.999% 等等&#xff09;。但是在Redis语境中&#xff0c;高可用的含义似乎要宽泛一些&#xf…

如何将本地的项目上传到Git

一、GitHub or GitLab or Gitee创建一个新的仓库 二、仓库路径创建成功后&#xff0c;将本地项目上传到git 1. 进入本地项目所在文件夹位置&#xff0c;右击 2.出现git命令框 输入git init 在当前项目的目录中生成本地的git管理&#xff08;会发现在当前目录下多了一个.git文件…

git 查看当前版本号

你看&#xff0c;那个人好像一条狗哎。 ——周星驰 《大话西游》 要查看当前 Git 仓库的版本号&#xff0c;您可以使用以下命令&#xff1a; git log --oneline -n 1 这会显示最近一次的提交信息&#xff0c;包括提交的哈希值&#xff08;版本号&#xff09;和提交的摘要信息…

Jmeter接口测试简易步骤

使用Jmeter接口测试 1、首先右键添加一个线程组&#xff0c;然后我们重命名接口测试 2、在线程组上添加一个Http默认请求&#xff0c;并配置服务器的IP地址端口等信息 3、在线程组中添加一个HTTP请求&#xff0c;这里我们重命名“增加信用卡账户信息接口” 4、配置接口请求信息…

Java基础入门·对存储文件File的相关操作

前言 File类获取的方法 getName() | getPath() File getAbsoluteFile() | File getParentFile() long length() File类遍历方法 IO流对象的分类 1.按照操作的文件类型分类 2.按照数据的流向分类 IO流对象的分类归纳 OutputStream 字节输出流写入文件的步骤 追加写入 F…