竞赛 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

news2025/1/22 13:12:01

文章目录

  • 0 前言
  • 1 课题描述
  • 2 实现效果
  • 3 算法实现原理
    • 3.1 数据集
    • 3.2 深度学习识别算法
    • 3.3 特征提取主干网络
    • 3.4 总体实现流程
  • 4 具体实现
    • 4.1 预训练数据格式
    • 4.2 部分实现代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题描述

随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越发广泛。如医疗影像识别、无人驾驶车载视觉、通用物体识别、自然场景下的文本识别等,根据不同的应用场景,人脸研究方向可以分为人脸检测、身份识别、性别识别、年龄预测、种族识别、表情识别等。近年来,人脸身份识别技术发展迅猛,在生活应用中取得了较好的效果,也逐渐趋于成熟,而年龄识别与性别预测,仍然是生物特征识别研究领域中一项具有挑战性的课题。

课题意义

相比人脸性别属性而言,人脸年龄属性的研究更富有挑战性。主要有两点原因,首先每个人的年龄会随着身体健康状况、皮肤保养情况而表现得有所不同,即便是在同一年,表现年龄会随着个人状态的不同而改变,人类识别尚且具有较高难度。其次,可用的人脸年龄估计数据集比较少,不同年龄的数据标签收集不易,现有大多数的年龄数据集都是在不同的复杂环境下的照片、人脸图片存在光照变化较复杂、部分遮挡、图像模糊、姿态旋转角度较大等一系列问题,对人脸模型的鲁棒性产生了较大的影响。

2 实现效果

这里废话不多说,先放上大家最关心的实现效果:

输入图片:
在这里插入图片描述

识别结果:

在这里插入图片描述

或者实时检测
在这里插入图片描述
在这里插入图片描述

3 算法实现原理

3.1 数据集

学长收集的数据集:
该人脸数据库的图片来源于互联网的爬取,而非研究机构整理,一共含有13000多张人脸图像,在这个数据集中大约有1860张图片是成对出现的,即同一个人的2张不同照片,有助于人脸识别算法的研究,图像标签中标有人的身份信息,人脸坐标,关键点信息,可用于人脸检测和人脸识别的研究,此数据集是对人脸算法效果验证的权威数据集.

在这里插入图片描述
该数据集包含的人脸范围比较全面,欧亚人种都有。

3.2 深度学习识别算法

卷积神经网络是常见的深度学习架构,而在CNN出现之前,图像需要处理的数据量过大,导致成本很高,效率很低,图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高。CNN的出现使得提取特征的能力变得更强,为更多优秀网络的研究提供了有力的支撑。CNN的核心思想是利用神经网络模拟人脑视觉神经系统,构造多个神经元并建立彼此之间的联系。不同的神经元进行分工,浅层神经元处理低纬度图像特征,深层神经元处理图像高级特征、语义信息等,CNN的网络结构主要由卷积层、BN层、激活层、池化层、全连接层、损失函数层构成,多个层协同工作实现了特征提取的功能,并通过特有的网络结构降低参数的数量级,防止过拟合,最终得到输出结果.

CNN传承了多层感知机的思想,并受到了生物神经科学的启发,通过卷积的运算模拟人类视觉皮层的“感受野”。不同于传统的前馈神经网络,卷积运算对图像的区域值进行加权求和,最终以神经元的形式进行输出。前馈神经网络对每一个输入的信号进行加权求和:

  • (a)图是前馈神经网络的连接方式
  • (b)图是CNN的连接方式。

在这里插入图片描述
cnn框架如下:
在这里插入图片描述

3.3 特征提取主干网络

在深度学习算法研究中,通用主干特征提取网络结合特定任务网络已经成为一种标准的设计模式。特征提取对于分类、识别、分割等任务都是至关重要的部分。下面介绍本文研究中用到的主干神经网络。

ResNet网络
ResNet是ILSVRC-2015的图像分类任务冠军,也是CVPR2016的最佳论文,目前应用十分广泛,ResNet的重要性在于将网络的训练深度延伸到了数百层,而且取得了非常好的效果。在ResNet出现之前,网络结构一般在20层左右,对于一般情况,网络结构越深,模型效果就会越好,但是研究人员发现加深网络反而会使结果变差。

在这里插入图片描述

人脸特征提取我这里选用ResNet,网络结构如下:
在这里插入图片描述

3.4 总体实现流程

在这里插入图片描述

4 具体实现

4.1 预训练数据格式

在这里插入图片描述

在这里插入图片描述

4.2 部分实现代码

训练部分代码:



    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    from six.moves import xrange
    from datetime import datetime
    import time
    import os
    import numpy as np
    import tensorflow as tf
    from data import distorted_inputs
    from model import select_model
    import json
    import re


    LAMBDA = 0.01
    MOM = 0.9
    tf.app.flags.DEFINE_string('pre_checkpoint_path', '',
                               """If specified, restore this pretrained model """
                               """before beginning any training.""")
    
    tf.app.flags.DEFINE_string('train_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0',
                               'Training directory')
    
    tf.app.flags.DEFINE_boolean('log_device_placement', False,
                                """Whether to log device placement.""")
    
    tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,
                                'Number of preprocessing threads')
    
    tf.app.flags.DEFINE_string('optim', 'Momentum',
                               'Optimizer')
    
    tf.app.flags.DEFINE_integer('image_size', 227,
                                'Image size')
    
    tf.app.flags.DEFINE_float('eta', 0.01,
                              'Learning rate')
    
    tf.app.flags.DEFINE_float('pdrop', 0.,
                              'Dropout probability')
    
    tf.app.flags.DEFINE_integer('max_steps', 40000,
                              'Number of iterations')
    
    tf.app.flags.DEFINE_integer('steps_per_decay', 10000,
                                'Number of steps before learning rate decay')
    tf.app.flags.DEFINE_float('eta_decay_rate', 0.1,
                              'Learning rate decay')
    
    tf.app.flags.DEFINE_integer('epochs', -1,
                                'Number of epochs')
    
    tf.app.flags.DEFINE_integer('batch_size', 128,
                                'Batch size')
    
    tf.app.flags.DEFINE_string('checkpoint', 'checkpoint',
                              'Checkpoint name')
    
    tf.app.flags.DEFINE_string('model_type', 'default',
                               'Type of convnet')
    
    tf.app.flags.DEFINE_string('pre_model',
                                '',#'./inception_v3.ckpt',
                               'checkpoint file')
    FLAGS = tf.app.flags.FLAGS
    
    # Every 5k steps cut learning rate in half
    def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
    
        print('decay [%f] every [%d] steps' % (decay_rate, at_step))
        def _decay(lr, global_step):
            return tf.train.exponential_decay(lr, global_step,
                                              at_step, decay_rate, staircase=True)
        return _decay
    
    def optimizer(optim, eta, loss_fn, at_step, decay_rate):
        global_step = tf.Variable(0, trainable=False)
        optz = optim
        if optim == 'Adadelta':
            optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
            lr_decay_fn = None
        elif optim == 'Momentum':
            optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
            lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
    
        return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta, optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
    
    def loss(logits, labels):
        labels = tf.cast(labels, tf.int32)
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=labels, name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)
        losses = tf.get_collection('losses')
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = cross_entropy_mean + LAMBDA * sum(regularization_losses)
        tf.summary.scalar('tl (raw)', total_loss)
        #total_loss = tf.add_n(losses + regularization_losses, name='total_loss')
        loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
        loss_averages_op = loss_averages.apply(losses + [total_loss])
        for l in losses + [total_loss]:
            tf.summary.scalar(l.op.name + ' (raw)', l)
            tf.summary.scalar(l.op.name, loss_averages.average(l))
        with tf.control_dependencies([loss_averages_op]):
            total_loss = tf.identity(total_loss)
        return total_loss
    
    def main(argv=None):
        with tf.Graph().as_default():
    
            model_fn = select_model(FLAGS.model_type)
            # Open the metadata file and figure out nlabels, and size of epoch
            input_file = os.path.join(FLAGS.train_dir, 'md.json')
            print(input_file)
            with open(input_file, 'r') as f:
                md = json.load(f)
    
            images, labels, _ = distorted_inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
            logits = model_fn(md['nlabels'], images, 1-FLAGS.pdrop, True)
            total_loss = loss(logits, labels)
    
            train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss, FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
            saver = tf.train.Saver(tf.global_variables())
            summary_op = tf.summary.merge_all()
    
            sess = tf.Session(config=tf.ConfigProto(
                log_device_placement=FLAGS.log_device_placement))
    
            tf.global_variables_initializer().run(session=sess)
    
            # This is total hackland, it only works to fine-tune iv3
            if FLAGS.pre_model:
                inception_variables = tf.get_collection(
                    tf.GraphKeys.VARIABLES, scope="InceptionV3")
                restorer = tf.train.Saver(inception_variables)
                restorer.restore(sess, FLAGS.pre_model)
    
            if FLAGS.pre_checkpoint_path:
                if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
                    print('Trying to restore checkpoint from %s' % FLAGS.pre_checkpoint_path)
                    restorer = tf.train.Saver()
                    tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
                    print('%s: Pre-trained model restored from %s' %
                          (datetime.now(), FLAGS.pre_checkpoint_path))

            run_dir = '%s/run-%d' % (FLAGS.train_dir, os.getpid())
    
            checkpoint_path = '%s/%s' % (run_dir, FLAGS.checkpoint)
            if tf.gfile.Exists(run_dir) is False:
                print('Creating %s' % run_dir)
                tf.gfile.MakeDirs(run_dir)
    
            tf.train.write_graph(sess.graph_def, run_dir, 'model.pb', as_text=True)
    
            tf.train.start_queue_runners(sess=sess)


            summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
            steps_per_train_epoch = int(md['train_counts'] / FLAGS.batch_size)
            num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs * steps_per_train_epoch
            print('Requested number of steps [%d]' % num_steps)

            for step in xrange(num_steps):
                start_time = time.time()
                _, loss_value = sess.run([train_op, total_loss])
                duration = time.time() - start_time
    
                assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
    
                if step % 10 == 0:
                    num_examples_per_step = FLAGS.batch_size
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = float(duration)
                    
                    format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ' 'sec/batch)')
                    print(format_str % (datetime.now(), step, loss_value,
                                        examples_per_sec, sec_per_batch))
    
                # Loss only actually evaluated every 100 steps?
                if step % 100 == 0:
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, step)
                    
                if step % 1000 == 0 or (step + 1) == num_steps:
                    saver.save(sess, checkpoint_path, global_step=step)
    
    if __name__ == '__main__':
        tf.app.run()



5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1021355.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RocketMQ编程使用和应用场景

RocketMQ消息模型 一、RocketMQ客户端基本使用 引入RocketMQ依赖 <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-client</artifactId><version>4.9.5</version> </dependency>ncy> RocketMQ…

哈希及哈希表的实现

目录 一、哈希的引入 二、概念 三、哈希冲突 四、哈希函数 常见的哈希函数 1、直接定址法 2、除留余数法 五、哈希冲突的解决 1、闭散列 2、开散列 一、哈希的引入 顺序结构以及平衡树中&#xff0c;元素关键码与其存储位置之间没有对应的关系&#xff0c;因此在查找…

【Java 基础篇】Java标准输入流详解:读取用户输入的完整指南

Java是一门流行的编程语言&#xff0c;常用于开发各种类型的应用程序&#xff0c;包括控制台应用、桌面应用、Web应用等。在这些应用中&#xff0c;与用户进行交互是一项重要的任务。本文将重点介绍Java标准输入流&#xff0c;它是Java程序中用于从用户获取输入的关键组成部分。…

【unity小技巧】Unity 存储存档保存——PlayerPrefs、JsonUtility和MySQL数据库的使用

文章目录 前言PlayerPrefs一、基本介绍二、Demo三、优缺点 JsonUtility一、基本使用二、Demo三、优缺点 Mysql&#xff08;扩展&#xff09;完结 前言 游戏存档不言而喻&#xff0c;是游戏设计中的重要元素&#xff0c;可以提高游戏的可玩性&#xff0c;为玩家提供更多的自由和…

【JavaScript】video标签配置及相关事件:

文章目录 一、标签配置&#xff1a;二、事件&#xff1a;三、案例&#xff1a; 一、标签配置&#xff1a; 标签名描述src要播放的路径地址autoplay是否自动播放&#xff0c;默认值是false,&#xff08;Boolean&#xff09;loop是否循环播放&#xff0c;默认值是false,&#xf…

Hbase工作原理

Hbase&#xff1a;HBase 底层原理详解&#xff08;深度好文&#xff0c;建议收藏&#xff09; - 腾讯云开发者社区-腾讯云 Hbase架构图 同一个列族如果有多个store&#xff0c;那么这些store在不同的region Hbase写流程&#xff08;读比写慢&#xff09; MemStore Flush Hbas…

arm day2(9.15)数据操作指令,跳转指令,特殊功能寄存器指令,+XMind

作业 1.求最大公约数&#xff1a; .text .global _start _start:mov r0,#0x9mov r1,#0x15bl Loop Loop:cmp r0,r1 比较r0寄存器和r1寄存器的中的值beq stop 当两数相同时,退出程序subhi r0,r0,r1 r0>r1 r0 r0 - r1subcc r1,r1,r0 r0<r1 r1 r1 - r0mov pc,lr 恢复现…

自动驾驶行业观察之2023上海车展-----整体发展趋势

1.行业趋势 新能源势不可挡。 本次车展上首发了150多款新车&#xff0c;约有100款是新能源车;跨国车企全面电动化&#xff0c;但日韩系布局相对缓慢&#xff1b; 2.自主品牌 品牌持续向上 本届车展自主品牌开始疯狂向高端内卷&#xff0c;高端化态度坚决 &#xff08;包括仰…

Modbus RTU(Remote Terminal Unit)与RS-485协议介绍(主站设备(Master)、从站设备(Slave))

文章目录 Modbus RTU与RS-485协议介绍一、引言二、Modbus RTU 协议介绍2.1 Modbus RTU 协议简介2.2 Modbus RTU 协议帧结构主站设备、从站设备与从站设备地址2.3 Modbus RTU 协议举例 三、RS-485 协议介绍3.1 RS-485 协议简介3.2 RS-485 物理连接方式3.3 RS-485 与 Modbus RTU …

代码片段的理解

1.后面的error直接走的是失败的回调 例如:权限不足,可以理解为服务器的一种形式 2.前面走的是成功的回调 但是也可能不对,例如在传过去的参数,在数据库查询不了这个值,传递过来的值不一样&#xff0c;这样它也是走的成功回调。

提升前端开发效率:基于vue的van-radio-group组件封装指南

前言 vant 作为一款流行的 ui 框架&#xff0c;其中&#xff0c;van-radio-group 组件是一个常用的单选框组件&#xff0c;但有时我们需要根据项目需求进行定制化封装。本文将介绍如何基于 vue 框架封装 van-radio-group 组件&#xff0c;让我们一起来探索吧&#xff01; 封装文…

Python网络编程:构建网络应用与通信

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 Python是一门强大的编程…

node查询七牛云上的文件信息

const qiniu require(qiniu) const {getQiNiuKey, } require(./tools)//#region 七牛云 const { accessKey, secretKey } getQiNiuKey() const mac new qiniu.auth.digest.Mac(accessKey, secretKey) let config new qiniu.conf.Config() // 空间对应的机房 config.zone …

目标跟踪方向开源数据集资源汇总

Temple Color 128 数据集下载链接&#xff1a;http://suo.nz/2dKEEL 本数据集包含一大组 128 种颜色序列&#xff0c;带有基本事实和挑战因素注释&#xff08;例如&#xff0c;遮挡&#xff09; NfS高帧率视频数据集 数据集下载链接&#xff1a;http://suo.nz/34o8df 第一个…

旺店通·企业奇门与金蝶云星空对接集成订单查询连通销售订单新增(旺店通销售-金蝶销售订单-小红书)

旺店通企业奇门与金蝶云星空对接集成订单查询连通销售订单新增(旺店通销售-金蝶销售订单-小红书) 接通系统&#xff1a;旺店通企业奇门 慧策最先以旺店通ERP切入商家核心管理痛点——订单管理&#xff0c;之后围绕电商经营管理中的核心管理诉求&#xff0c;先后布局流量获取、会…

react-route的路由

React-Router是一个基于React的强大路由库&#xff0c;它可以帮助我们在React应用中实现页面之间的跳转和路由管理。本文将详细介绍React-Router的路由功能、常用功能模块、路由传参和路由嵌套&#xff0c;并提供相关代码和解释。 路由功能 React-Router通过管理URL和组件的映…

Vue3 ~

变动 实例 const app new Vue({}) Vue.use() Vue.mixin() Vue.component() Vue.directive()const app Vue.createApp({}) app.use() app.mixin() app.component() app.directive()createApp 代替 new Vue 允许多个根标签 createStore 代替 Vue.use(Vuex) createRouter 代替…

保障网络安全:IP代理识别API的作用与应用

引言 随着互联网的不断发展&#xff0c;网络安全问题已经变得愈发重要。在网络上&#xff0c;恶意用户可以利用IP代理隐藏其真实身份&#xff0c;从而发动各种网络攻击或欺诈行为。为了保障网络安全&#xff0c;IP代理识别API成为了一种不可或缺的工具&#xff0c;本文将深入探…

计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

文章目录 0 前言1 课题说明2 效果展示3 具体实现4 关键代码实现5 算法综合效果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的数学公式识别算法实现 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学…

Apollo配置更新通知

文章目录 启用方式hook编写服务部署本地部署容器化部署构建镜像 使用 ⚡️: 应领导要求想要把 Apollo 配置变更信息更新到企业微信群中&#xff0c;线上出现异常可根据变更时间&#xff0c;快速反应是否是配置变更导致异常 启用方式 &#x1f31b;: 前提有一个可正常使用的Apo…