用GPT干的18件事,能够真正提高学习生产力,建议收藏

news2024/11/27 17:45:48

用GPT干的18件事,能够真正提高学习生产力,建议收藏。

在这里插入图片描述

语法更正
文本翻译
语言转换
代码解释
修复代码错误
作为百科全书
信息提取
好友聊天
创意生成器
采访问题
论文大纲
故事创作
问题类比
创建 SQL 需求
情感分析
将产品描述转变为广告
关键字提取
闲聊机器人


语法更正
用途:文章、论文等润色。

在这里插入图片描述


文本翻译
用途:日常学习、商务翻译等。

在这里插入图片描述


语言转换
Python–>JAVA

用途:工作用途,不同语言工程师之间的合作,更加方便。

import numpy as np
import plotly.express as px

def thresholding_algo(y, lag, threshold):
    """
    :param y: 输入列表
    :param lag: 滑动窗口大小
    :param threshold: 调节系数,用于调节容忍范围的大小。
    :return:
    """
    # signals:信号列表
    signals = np.zeros(len(y))
    avgFilter = np.zeros(len(y))

    # 初始化平均值列表、差值列表
    avgFilter[lag - 1] = np.mean(y[0:lag])
    dif_li = [0] * len(y)

    for i in range(lag, len(y)):
        if i < len(y) - lag - 30:
            for j in range(i + 11, len(y)):
                if y[j] >= y[i - 1]:
                    break
            if j >= len(y) - 30:
                back = y[i - 1]
            else:
                back = np.mean(y[j + 11:j + 20 + lag])
        else:
            back = y[i - 1]

        # 前后均值差值计算
        tmp = abs(back - avgFilter[i - 1])
        dif = (tmp if tmp > 1 else 1)

        if abs(y[i] - avgFilter[i - 1]) > dif * threshold:
            signals[i] = (1 if y[i] > avgFilter[i - 1] else -1)
            avgFilter[i] = np.mean(y[(i - lag):i])
            y[i] = avgFilter[i - 1]
        else:
            signals[i] = 0
            avgFilter[i] = np.mean(y[(i - lag):i])

        dif_li[i] = dif

    return dict(signals=np.asarray(signals),
                avgFilter=np.asarray(avgFilter),
                y=np.asarray(y),
                dif=np.asarray(dif_li),
                )

在这里插入图片描述

public static Map<String, double[]> thresholding_algo(double[] y, int lag, double threshold) {

    double[] signals = new double[y.length];
    double[] avgFilter = new double[y.length];
    Arrays.fill(avgFilter, 0.0);

    avgFilter[lag - 1] = mean(Arrays.copyOfRange(y, 0, lag));
    double[] dif_li = new double[y.length];
    Arrays.fill(dif_li, 0.0);

    for (int i = lag; i < y.length; i++) {
        int j;
        if (i < y.length - lag - 30) {
            for (j = i + 11; j < y.length; j++) {
                if (y[j] >= y[i - 1]) {
                    break;
                }
            }
            double back;
            if (j >= y.length - 30) {
                back = y[i - 1];
            } else {
                back = mean(Arrays.copyOfRange(y, j + 11, j + 20 + lag));
            }
        } else {
            back = y[i - 1];
        }

        double tmp = Math.abs(back - avgFilter[i - 1]);
        double dif = tmp > 1 ? tmp : 1;

        if (Math.abs(y[i] - avgFilter[i - 1]) > dif * threshold) {
            signals[i] = y[i] > avgFilter[i - 1] ? 1 : -1;
            avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i));
            y[i] = avgFilter[i - 1];
        } else {
            signals[i] = 0;
            avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i));
        }

        dif_li[i] = dif;
    }

    Map<String, double[]> result = new HashMap<>();
    result.put("signals", signals);
    result.put("avgFilter", avgFilter);
    result.put("y", y);
    result.put("dif", dif_li);

    return result;
}

private static double mean(double[] array) {
    double sum = 0.0;
    for (double d : array) {
        sum += d;
    }
    return sum / array.length;
}

代码解释-1
用途:当我们来到一家新的公司,发现前任工程师留下了一摊谁都看不懂的代码,这时候,如果有个人能帮我们解释一下这些代码是什么意思,那简直不要太开心。

在这里插入图片描述

def Fusion_algorithm(y_list):
    """
    最终的融合算法
    1、第一次遍历列表: 处理掉小于上一个值的点,使其等于上一个值。
    2、第二次使用z-score来处理异常点:一种基于统计方法的时序异常检测算法借鉴了一些经典的统计方法,比如Z-score和移动平均线
    该算法将时间序列中的每个数据点都看作是来自一个正态分布,通过计算每个数据点与其临接数据点的平均值和标准差,可以获得Z-score
    并将其用于检测异常值,将z-score大于3的数据点视为异常值,缺点:如果异常点太多,则该算法的准确性较差。
    3:param y_list: 传入需要处理的时间序列
    :return:
    """
    # 第一次处理
    for i in range(1, len(y_list)):
        difference = y_list[i] - y_list[i - 1]
        if difference <= 0:
            y_list[i] = y_list[i - 1]
        # 基于突变检测的方法:如果一个数据点的值与前一个数据点的值之间的差异超过某个阈值,
        # 则该数据点可能是一个突变的异常点。这种方法需要使用一些突变检测算法,如Z-score突变检测、CUSUM(Cumulative Sum)
        # else:
        #     if abs(difference) > 2 * np.mean(y_list[:i]):
        #         y_list[i] = y_list[i - 1]

    # 第二次处理
    # 计算每个点的移动平均值和标准差
    ma = np.mean(y_list)
    # std = np.std(np.array(y_list))
    std = np.std(y_list)
    # 计算Z-score
    z_score = [(x - ma) / std for x in y_list]
    # 检测异常值
    for i in range(len(y_list)):
        # 如果z-score大于3,则为异常点,去除
        if z_score[i] > 3:
            print(y_list[i])
            y_list[i] = y_list[i - 1]

    return y_list

在这里插入图片描述


代码解释-2
备注:上一个代码解释,我们可以看到,答案或许受到了代码中注释的影响,我们删掉注释,再来一次。对于解释中一些不懂的点,我们可以连续追问!

在这里插入图片描述

import numpy as np
from sklearn.ensemble import IsolationForest
import plotly.express as px
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import json

def Fusion_algorithm(y_list):
    for i in range(1, len(y_list)):
        difference = y_list[i] - y_list[i - 1]
        if difference <= 0:
            y_list[i] = y_list[i - 1]
    
        # else:
        #     if abs(difference) > 2 * np.mean(y_list[:i]):
        #         y_list[i] = y_list[i - 1]


    ma = np.mean(y_list)
    std = np.std(y_list)
    z_score = [(x - ma) / std for x in y_list]
    for i in range(len(y_list)):
        if z_score[i] > 3:
            print(y_list[i])
            y_list[i] = y_list[i - 1]

    return y_list

在这里插入图片描述
在这里插入图片描述


修复代码错误
用途:写完一段代码后发现有错误?让chatGPT来帮你!

在这里插入图片描述

### Buggy Python
import Random
a = random.randint(1,12)
b = random.randint(1,12)
for i in range(10):
    question = "What is "+a+" x "+b+"? "
    answer = input(question)
    if answer = a*b
        print (Well done!)
    else:
        print("No.")

在这里插入图片描述


作为百科全书
用途:chatGPT可以解释你所有的问题!但是列出小说这个功能有些拉跨,经过测试只有科幻小说列的还可以,其他类型不太行,可能chatgpt训练工程师是个科幻迷!

在这里插入图片描述


信息提取
用途:作为自然语言处理界的大模型,怎么能少得了信息提取呢?

在这里插入图片描述


好友聊天
用途:输入对方性格模拟聊天,这方面功能不太完善,可能有新鲜玩法我还没有挖掘出来。

在这里插入图片描述
在这里插入图片描述


创意生成器
用途:是不是常常会在创新上遇到思维瓶颈不知道怎么做?不要担心,让chatGPT帮你生成创意!

VR和密室结合

在这里插入图片描述
再结合AR

在这里插入图片描述


采访问题
用途:可能您是一个媒体工作者,采访问题不知道怎么写?chatGPT可以帮您解决。

采访问题清单

在这里插入图片描述

采访问题清单并给出相应答案

在这里插入图片描述


论文大纲
用途:这个功能对于研究生简直不要太爽了,一直在郁闷大纲怎么写,直接列出来大纲简直帮了我天大的忙!对于大纲中不理解的点,直接要求chatGPT给出进一步解释。代码也可以有!那一章的内容不太会写,直接让chatGPT安排,这样,一篇论文很快就写出来啦!

创建论文大纲

在这里插入图片描述

解释大纲内容
在这里插入图片描述

class PBA(nn.Module):
    def __init__(self, PerformanceThreshold, DistributionType, AttentionWeightRange):
        super(PBA, self).__init__()
        self.PerformanceThreshold = PerformanceThreshold
        self.DistributionType = DistributionType
        self.AttentionWeightRange = AttentionWeightRange
        
    def forward(self, input, performance_scores):
        # 计算注意力分数
        attention_scores = []
        for i in range(len(input)):
            if performance_scores[i] > self.PerformanceThreshold:
                attention_scores.append(performance_scores[i])
            else:
                attention_scores.append(0.0)
                
        # 将性能分数映射到注意力权重
        if self.DistributionType == "softmax":
            attention_weights = F.softmax(torch.tensor(attention_scores), dim=0)
        elif self.DistributionType == "sigmoid":
            attention_weights = torch.sigmoid(torch.tensor(attention_scores))
        else:
            raise ValueError("Unknown distribution type: {}".format(self.DistributionType))
        
        # 缩放注意力权重到指定范围
        attention_weights = attention_weights * (self.AttentionWeightRange[1] - self.AttentionWeightRange[0]) + self.AttentionWeightRange[0]
        
        # 计算加权输入
        weighted_input = torch.mul(input, attention_weights.unsqueeze(1).expand_as(input))
        output = torch.sum(weighted_input, dim=0)
        
        return output

故事创作
用途:这个功能真的太太太棒了,以后我自己列提纲出来就可以写小说啦!

爱情故事

在这里插入图片描述

恐怖故事
在这里插入图片描述

在这里插入图片描述


问题类比
用途:当你想要做一个比喻时,这是一个很棒的功能。

在这里插入图片描述


创建SQL需求
用途:写SQL有时候挺头疼的,想好久想不起来。

在这里插入图片描述


情感分析
用途:这个功能让我想起来在之前公司做的情感分析任务了。

在这里插入图片描述


将产品描述转变为广告
用途:这个功能对于商家来说太棒了。

在这里插入图片描述


关键字提取
用途:NLP任务的重要作用,关键字提取!

在这里插入图片描述


闲聊机器人
用途:这个不多说了,用来闲聊体验感真的很不错。

在这里插入图片描述
在这里插入图片描述


总结
我觉得角色扮演挺有意思的,对话前加一句:假如你是 xxx。

现在有一些小程序,让AI扮演一些角色对话,就是用这种方法实现的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1008718.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Tailwind CSS 初学者指南

Tailwind CSS是一个实用程序优先的CSS框架&#xff0c;允许您快速构建现代网站&#xff0c;而无需离开HTML。它是 Web 开发社区中最流行和使用最广泛的 CSS 框架之一&#xff0c;每月下载量超过 250 万次1。在本文中&#xff0c;我们将探讨 Tailwind CSS 2023 的路线图&#xf…

go string类型简叙

字符串赋值后就不能修改 var str string "abcd" str[0] f //这里就有能修改str内容字符串的两种表示形式 双引号&#xff0c;会识别转义字符反引号&#xff0c;以字符串的原生形式输出&#xff0c;包括换行和特殊字符&#xff0c;可以实现防止攻击、输出输出源代…

el-table表格中加入输入框

<template><div class"box"><div class"btn"><el-button type"primary">发送评委</el-button><el-button type"primary" click"flag true" v-if"!flag">编辑</el-button…

Android EditText筛选+选择功能开发

在日常开发中经常会遇到这种需求&#xff0c;EditText既需要可以筛选&#xff0c;又可以点击选择。这里筛选功能用的是AutoCompleteTextView&#xff0c;选择功能使用的是第三方库https://github.com/kongzue/DialogX。 Android AutoCompleteTextView(自动完成文本框)的基本使用…

Mozilla 紧急修补 Firefox 和 Thunderbird 中的 WebP 严重零日漏洞

Mozilla 周二发布了安全更新&#xff0c;修复了 Firefox 和 Thunderbird 中的一个关键零日漏洞。 该漏洞被标记为 CVE-2023-4863&#xff0c;是 WebP 图像格式中的堆缓冲区溢出漏洞&#xff0c;在处理特制图像时可能导致任意代码执行。 Mozilla 在一份公告中说&#xff0c;打…

MyBatisPlus(二)基础Mapperr接口:增删改查

MyBatisPlus&#xff1a;基础Mapper接口&#xff1a;增删改查 插入一条数据 代码 Testpublic void insert() {User user new User();user.setId(6L);user.setName("张三");user.setAge(25);user.setEmail("zhangsanexample.com");userMapper.insert(use…

系统安全漏洞检测技术第三方检测机构

安全测试报告 建立一个安全的Web系统一直是很多企业的目标&#xff0c;一个比较实用的方法就是建立比较容易实现的相对安全的系统&#xff0c;同时按照一定的安全策略建立相应的安全辅助系统&#xff0c;系统安全漏洞检测就是这样一类安全辅助系统。 系统安全漏洞检测技术 1、…

Kali Linux基础篇(一) 信息收集

一、前言 1、信息收集分主动信息收集和被动信息收集 主动方式&#xff1a;攻击者直接访问网站&#xff0c;对网站做出扫描、探测等行为&#xff0c;目标系统可能会记录操作信息被动方式&#xff1a;利用第三方的服务访问目标&#xff0c;被动信息收集不会留下访问痕迹&#x…

华三路由交换技术基础——计算机网络基础

计算机网络&#xff1a; 定义&#xff1a;一组具有自治权的计算机互联的集合 作用&#xff1a; 1.共享信息资源 2.分解式处理信息 4.负载均衡 5.综合信息服务 它是计算机技术与通信技术的两个领域的结合 一&#xff0c;计算机网络中的基本概念&#xff1a; 局域网&#xff…

js中如何判断一个变量是否为数字类型?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐使用Number.isNaN()方法⭐使用正则表达式⭐使用isNaN()函数⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个…

线性代数的本质(二)——线性变换与矩阵

文章目录 线性变换与矩阵线性变换与二阶方阵常见的线性变换复合变换与矩阵乘法矩阵的定义列空间与基矩阵的秩逆变换与逆矩阵 线性变换与矩阵 线性变换与二阶方阵 本节从二维平面出发学习线性代数。通常选用平面坐标系 O x y Oxy Oxy &#xff0c;基向量为 i , j \mathbf i,…

【Linux网络编程】Socket-UDP实例

这份代码利用下面所有知识编写了一个简易聊天室&#xff08;基于Linux操作系统&#xff09;。虽然字数挺多其实并不复杂&#xff0c;这里如果能够看完或许会对你的知识进行一下串联&#xff0c;这篇文章比较杂并且网络编程这块知识需要用到系统编程的知识&#xff0c;希望能帮助…

内网隧道代理技术(二十四)之 ICMP隧道介绍

ICMP隧道介绍 ICMP介绍 ICMP(InternetControl MessageProtocol)Internet控制报文协议。它是TCP/IP协议簇的一个子协议,用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但…

《PostgreSQL与NoSQL:合作与竞争的关系》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

OpenCV(三十五):凸包检测

1.凸包检测介绍 凸包检测是计算凸包的一种技术&#xff0c;凸包就是&#xff1a;给定二维平面上的点集&#xff0c;将最外层的点连接起来构成的凸边形&#xff0c;它是包含点集中所有的点。 2.凸包检测函数convexHull() void cv::convexHull ( InputArray points, OutputArra…

华为云云耀云服务器L实例评测|初始化centos镜像到安装nginx部署前端vue、react项目

文章目录 ⭐前言⭐购买服务器&#x1f496; 选择centos镜像 ⭐在控制台初始化centos镜像&#x1f496;配置登录密码 ⭐在webstorm ssh连接 服务器⭐安装nginx&#x1f496; wget 下载nginx&#x1f496; 解压运行 ⭐添加安全组⭐nginx 配置⭐部署vue&#x1f496; 使用默认的ng…

PHP8中删除数组中的重复元素-PHP8知识详解

在 php 8 中&#xff0c;你可以使用array_unique()函数来删除数组中的重复元素。该函数将返回一个新的数组&#xff0c;其中包含原始数组中的唯一元素&#xff0c;而重复的元素只保留第一个出现的。 array_unique()函数返回具有唯一性元素的数组&#xff0c;语法格式如下&#…

【Stable Diffusion】安装 Comfyui 之 window版

序言 由于stable diffusion web ui无法做到对流程进行控制&#xff0c;只是点击个生成按钮后&#xff0c;一切都交给AI来处理。但是用于生产生活是需要精细化对各个流程都要进行控制的。 故也就有个今天的猪脚&#xff1a;Comfyui 步骤 下载comfyui项目配置大模型和vae下载…

《Docker与Kubernetes容器运维实战》简介

#好书推荐##好书奇遇季#《Docker与Kubernetes容器运维实战》已经出版。本书帮助读者系统掌握Docker与K8s运维技能。 本书内容 本书分两部分系统介绍Docker与Kubernetes的运维技术。 &#xff08;1&#xff09;Docker部分包括&#xff1a;全面认识Docker、初步体验Docker、Dock…

pywinauto:Windows桌面应用自动化测试(二)

前言 上一篇文章地址&#xff1a; pywinauto&#xff1a;Windows桌面应用自动化测试&#xff08;一&#xff09;_pywinauto中文手册_Lion King的博客-CSDN博客 下一篇文章地址&#xff1a; 暂无 一、书接上回 在上一篇文章地址中&#xff0c;我们提到去试用一下 “国产ap…