B-/B+树看 MySQL索引结构
B-树
B-树,这里的 B 表示 balance( 平衡的意思),B-树是一种多路自平衡的搜索树.它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点。下图是 B-树的简化图.
B-树有如下特点:
所有键值分布在整颗树中;
任何一个关键字出现且只出现在一个结点中;
搜索有可能在非叶子结点结束;
在关键字全集内做一次查找,性能逼近二分查找;
B+ 树
B+树是B-树的变体,也是一种多路搜索树, 它与 B- 树的不同之处在于:
所有关键字存储在叶子节点出现,内部节点(非叶子节点并不存储真正的 data)
为所有叶子结点增加了一个链指针
简化 B+树 如下图
为什么使用B-/B+ Tree
红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构。MySQL 是基于磁盘的数据库系统,索引往往以索引文件的形式存储的磁盘上,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。为什么使用B-/+Tree,还跟磁盘存取原理有关。
局部性原理与磁盘预读
由于磁盘的存取速度与内存之间鸿沟,为了提高效率,要尽量减少磁盘I/O.磁盘往往不是严格按需读取,而是每次都会预读,磁盘读取完需要的数据,会顺序向后读一定长度的数据放入内存。而这样做的理论依据是计算机科学中著名的局部性原理:
当一个数据被用到时,其附近的数据也通常会马上被使用
程序运行期间所需要的数据通常比较集中
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率.预读的长度一般为页(page)的整倍数。
MySQL(默认使用InnoDB引擎),将记录按照页的方式进行管理**,每页大小默认为16K(这个值可以修改)**.linux 默认页大小为4K
B-/+Tree索引的性能分析
实际实现B-Tree还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个结点只需一次I/O。
假设 B-Tree 的高度为 h,B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。
B-Tree和B+Tree中为什么优先选择B+Tree
B+树更适合外部存储,由于内节点无 data 域,一个结点可以存储更多的内结点,每个节点能索引的范围更大更精确,也意味着 B+树单次磁盘IO的信息量大于B-树,I/O效率更高。
Mysql是一种关系型数据库,区间访问是常见的一种情况,B+树叶节点增加的指向相邻节点的链指针,加强了区间访问性,可使用在范围区间查询等,而B-树每个节点 key 和 data 在一起,则无法区间查找(between, <,>)。
B+Tree的定义
B+Tree是B树的变种,有着比B树更高的查询性能,来看下m阶B+Tree特征:
有m个子树的节点包含有m个元素(B-Tree中是m-1)
根节点和分支节点中不保存数据,只用于索引,所有数据都保存在叶子节点中。
所有分支节点和根节点都同时存在于子节点中,在子节点元素中是最大或者最小的元素。
叶子节点会包含所有的关键字,以及指向数据记录的指针,并且叶子节点本身是根据关键字的大小从小到大顺序链接。
红点表示是指向卫星数据的指针,指针指向的是存放实际数据的磁盘页,卫星数据就是数据库中一条数据记录。
叶子节点中还有一个指向下一个叶子节点的next指针,所以叶子节点形成了一个有序的链表,方便遍历B+树。
B+树的优势
1.更加高效的单元素查找
B+树的查找元素3的过程:
第一次磁盘IO
第二次磁盘IO
第三次磁盘IO
这个过程看下来,貌似与B树的查询过程没有什么区别。但实际上有两点不一样:
a、首先B+树的中间节点不存储卫星数据,所以同样大小的磁盘页可以容纳更多的节点元素,如此一来,相同数量的数据下,B+树就相对来说要更加矮胖些,磁盘IO的次数更少。
b、由于只有叶子节点才保存卫星数据,B+树每次查询都要到叶子节点;而B树每次查询则不一样,最好的情况是根节点,最坏的情况是叶子节点,没有B+树稳定。
2.叶子节点形成有顺链表,范围查找性能更优
B树范围查找3-8的过程
a、先查找3
b、再查找4、5、6、7、8,中间过程省略,直接到8的查找
这里查找的范围跨度越大,则磁盘IO的次数越多,性能越差。
B+树范围查找3-11的过程
先从上到下找到下限元素3,然后通过链表指针,依次遍历得到元素5/6/8/9/11;如此一来,就不用像B树那样一个个元素进行查找。
总结
1.单节点可以存储更多的元素,使得查询磁盘IO次数更少。
2.所有查询都要查找到叶子节点,查询性能稳定。
3.所有叶子节点形成有序链表,便于范围查询。
PS:在数据库的聚集索引(Clustered Index)中,叶子节点直接包含卫星数据。在非聚集索引(NonClustered Index)中,叶子节点带有指向卫星数据的指针。